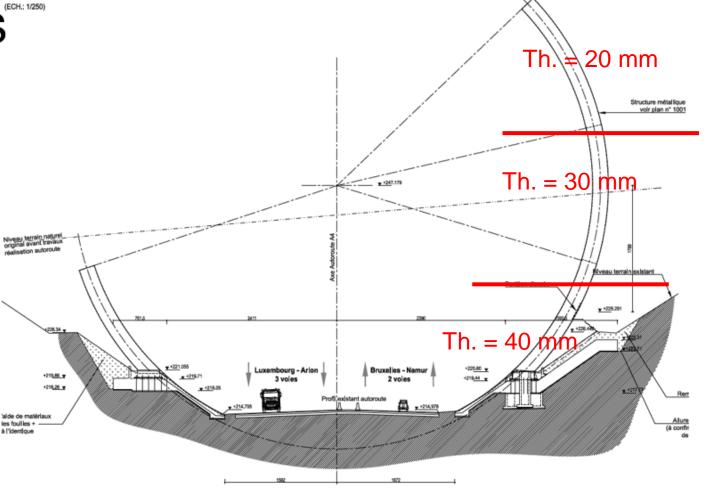
WIND PROJECT

Wind verification of a work of art: the Arc Make the wind verification of the work of art Arc Majeur located on the motorway E411 according to the Eurocode EN 1991-1-4

Main dimensions

Main dimensions (ECH: 1250)

- Angle of 205°
- Radius of 38,5m
- Height: 60m
- Square section 2,25m
- Corten Steel: thk of 20 mm, 30mm and 40mm
- Total mass 147 To + 37 To
- Foundations: 1200 To



- Mean wind speed
- Turbulence intensity
- The peak wind speed
- The peak wind pressure
- Wind distributed loads on the arc

Reference wind speed = Vb,0 = 23m/s

Return period = 50 years

 $Cdir = Cseasonal = C_0 = 1,0$

Terrain Category II \rightarrow z0 = 0.05 and zmin = 2m

The force coefficient for a square section is taken equal to: Cf = 2,0

Terrain category 0

Sea, coastal area exposed to the open sea



Terrain category I

Lakes or area with negligible vegetation and without obstacles

Terrain category II

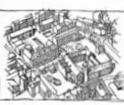
Area with low vegetation such as grass and isolated obstacles (trees, buildings) with separations of at least 20 obstacle heights

Terrain category III

Area with regular cover of vegetation or buildings or with isolated obstacles with separations of maximum 20 obstacle heights (such as villages, suburban terrain, permanent forest)

Terrain category IV

Area in which at least 15 % of the surface is covered with buildings and their average height exceeds 15 m



(2)P The basic wind velocity shall be calculated from Expression (4.1).

$$V_{\rm b} = C_{\rm dir} \cdot C_{\rm season} \cdot V_{\rm b,0}$$
 (4.1)

where:

v_b is the basic wind velocity, defined as a function of wind direction and time of year at 10 m above ground of terrain category II

 $v_{b,0}$ is the fundamental value of the basic wind velocity, see (1)P

c_{dir} is the directional factor, see Note 2.

 c_{season} is the season factor, see Note 3.

4.3 Mean wind

4.3.1 Variation with height

(1) The mean wind velocity $v_m(z)$ at a height z above the terrain depends on the terrain roughness and orography and on the basic wind velocity, v_b , and should be determined using Expression (4.3)

$$V_{m}(z) = c_{r}(z) \cdot c_{o}(z) \cdot V_{b} \qquad V_{m,top} = 31 \text{ m/s}$$

$$(4.3)$$

4.4 Wind turbulence

(1) The turbulence intensity $I_v(z)$ at height z is defined as the standard deviation of the turbulence divided by the mean wind velocity.

NOTE 1 The turbulent component of wind velocity has a mean value of 0 and a standard deviation σ_v . The standard deviation of the turbulence σ_v may be determined using Expression (4.6).

$$\sigma_{v} = k_{r} \cdot v_{b} \cdot k_{l} \tag{4.6}$$

For the terrain factor k_r see Expression (4.5), for the basic wind velocity v_b see Expression (4.1) and for turbulence factor k_l see Note 2.

NOTE 2 The recommended rules for the determination of $I_{c}(z)$ are given in Expression (4.7)

$$I_{v}(z) = \frac{\sigma_{v}}{v_{m}(z)} = \frac{k_{l}}{C_{o}(z) \cdot \ln(z/z_{0})} \quad \text{for} \quad z_{min} \le z \le z_{max}$$

$$I_{v}(z) = I_{v}(z_{min}) \quad \text{for} \quad z < z_{min}$$

$$(4.7)$$

$$I_{v,top} = 0.141$$

4.4 Wind turbulence

(1) The turbulence intensity $I_v(z)$ at height z is defined as the standard deviation of the turbulence divided by the mean wind velocity.

NOTE 1 The turbulent component of wind velocity has a mean value of 0 and a standard deviation σ_v . The standard deviation of the turbulence σ_v may be determined using Expression (4.6).

$$\sigma_{v} = k_{r} \cdot v_{b} \cdot k_{l} \tag{4.6}$$

For the terrain factor k_l see Expression (4.5), for the basic wind velocity v_b see Expression (4.1) and for turbulence factor k_l see Note 2.

NOTE 2 The recommended rules for the determination of $I_{\nu}(z)$ are given in Expression (4.7)

$$I_{v}(z) = \frac{\sigma_{v}}{V_{m}(z)} = \frac{k_{l}}{C_{o}(z) \cdot \ln(z/z_{0})} \quad \text{for} \quad z_{min} \le z \le z_{max}$$

$$I_{v}(z) = I_{v}(z_{min}) \quad \text{for} \quad z < z_{min}$$

$$(4.7)$$

4.5 Peak velocity pressure

(1) The peak velocity pressure $q_p(z)$ at height z, which includes mean and short-term velocity fluctuations, should be determined.

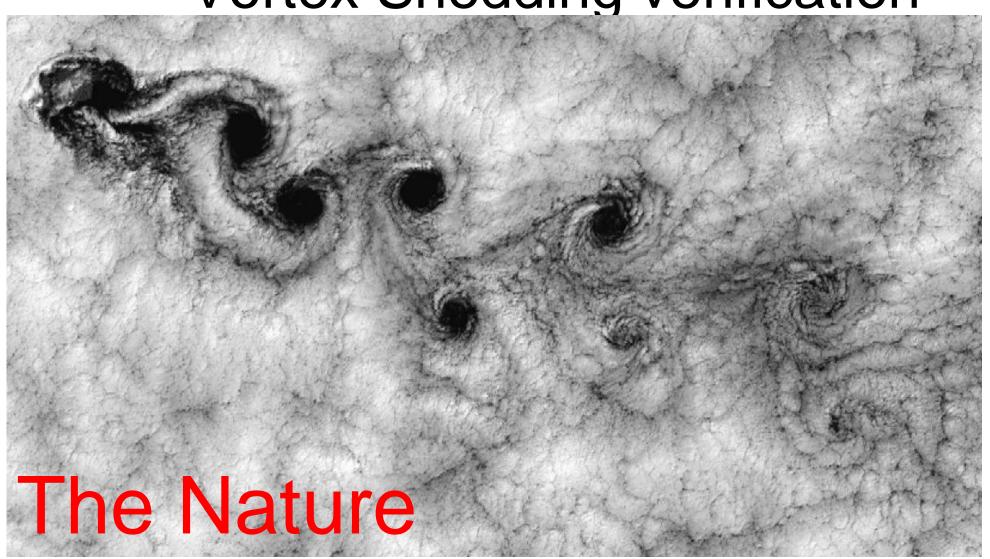
NOTE 1 The National Annex may give rules for the determination of $q_p(z)$. The recommended rule is given in Expression (4.8).

$$q_{p}(z) = [1+7 \cdot I_{v}(z)] \cdot \frac{1}{2} \cdot \rho \cdot v_{m}^{2}(z) = c_{e}(z) \cdot q_{b}$$

$$V_{p,top} = 43.7 \text{ m/s}$$

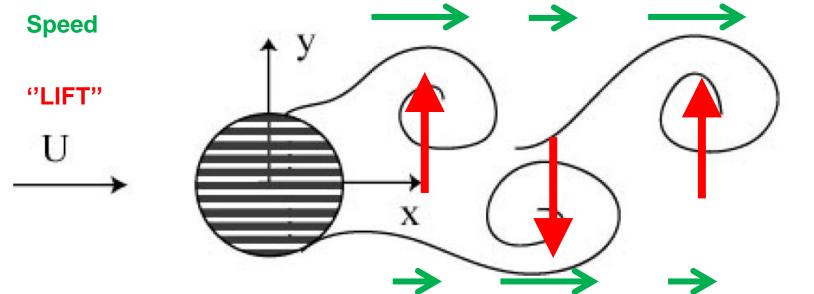
$$Q_{p,top} = 1200 \text{ N/m}^{2}$$
(4.8)

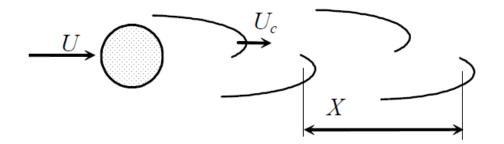
Vortex Shedding verification



t = 0.550

youtube.com/user/rosikru

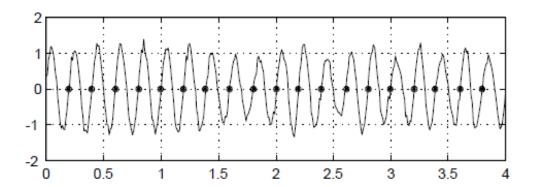




Vortices generates sinusoidal lateral lift forces

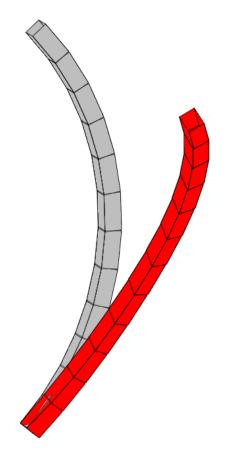
These altenated vortices

- Will create lift forces (lu, lv)
- Will be more regular if the wind turbulence (lu, lv) is low



Eigen Modes

Beam models



- Compute first eigen modes
- Calculate modal masses

Eigen Modes (Ψ) normalized with maximum displacement = 1

With Matlab : Ψ^T .M. $\Psi = 1$

Matlab value should be corrected:

Ψ **→** Ψ/max(Ψ)

Modal mass $\rightarrow \Psi^{T}.M.\Psi / max(\Psi)^{2}$

Vortex Shedding Verification

BS EN 1991-1-4:2005+A1:2010 EN 1991-1-4:2005+A1:2010 (E)

Annex E (informative)

Vortex shedding and aeroelastic instabilities

E.1 Vortex shedding

Vortex Shedding Verification

BS EN 1991-1-4:2005+A1:2010 EN 1991-1-4:2005+A1:2010 (E)

Annex E

(informative)

Vortex shedding and aeroelastic instabilities

$$v_{\text{crit,i}} = \frac{b \cdot n_{\text{i,y}}}{St}$$
 (E.2)

where:

- b is the reference width of the cross-section at which resonant vortex shedding occurs and where the modal deflection is maximum for the structure or structural part considered; for circular cylinders the reference width is the outer diameter
- $n_{i,y}$ is the natural frequency of the considered flexural mode i of cross-wind vibration; approximations for $n_{1,y}$ are given in F.2
- St Strouhal number as defined in E.1.3.2.

Vortex Shedding Verification

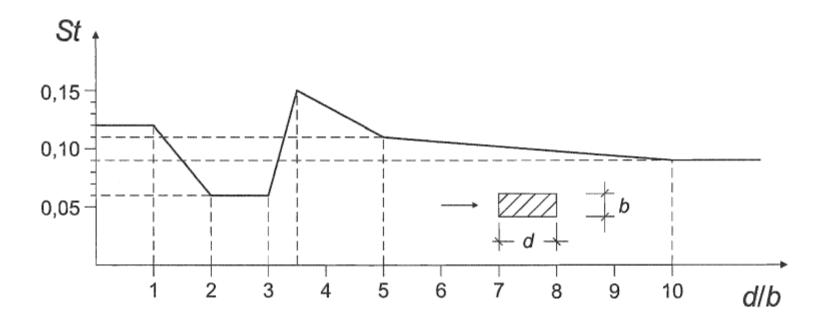


Figure E.1 — Strouhal number (St) for rectangular cross-sections with sharp corners

Vortex Shedding Verification – amplitude approach 1

E.1.5.2 Approach 1 for the calculation of the cross wind amplitudes

E.1.5.2.1 Calculation of displacements

The largest displacement $y_{F,max}$ can be calculated using Expression (E.7).

$$\frac{y_{\text{F,max}}}{b} = \frac{1}{St^2} \cdot \frac{1}{Sc} \cdot K \cdot K_{\text{W}} \cdot c_{\text{lat}}$$
 (E.7)

where:

St is the Strouhal number given in Table E.1

Sc is the Scruton number given in E.1.3.3

 $K_{\rm W}$ is the effective correlation length factor given in E.1.5.2.4

K is the mode shape factor given in E.1.5.2.5

 c_{lat} is the lateral force coefficient given in Table E.2

Vortex Shedding Verification – amplitude approach 2

E.1.5.3 Approach 2, for the calculation of the cross wind amplitudes

(1) The characteristic maximum displacement at the point with the largest movement is given in Expression (E.13).

$$y_{\text{max}} = \sigma_{y} \cdot k_{p} \tag{E.13}$$

where:

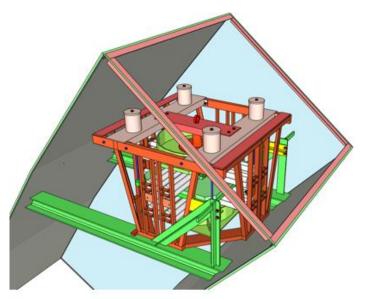
 σ_{y} is the standard deviation of the displacement, see (2)

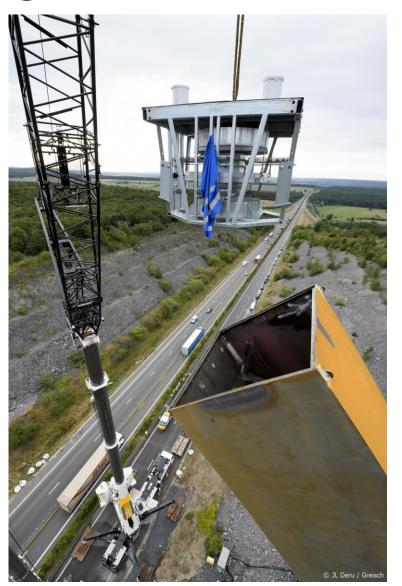
 $k_{\rm p}$ is the peak factor, see (6)

(2) The standard deviation σ_y of the displacement related to the width b at the point with the largest deflection ($\Phi = 1$) can be calculated by using Expression (E.14).

$$\frac{\sigma_{y}}{b} = \frac{1}{St^{2}} \cdot \frac{C_{c}}{\sqrt{\frac{Sc}{4 \cdot \pi} - K_{a} \cdot \left(1 - \left(\frac{\sigma_{y}}{b \cdot a_{L}}\right)^{2}\right)}} \cdot \sqrt{\frac{\rho \cdot b^{2}}{m_{e}}} \cdot \sqrt{\frac{b}{h}}$$
(E.14)

Vortex Shedding Verification – TMD design





Vortex Shedding Verification – TMD design

- Use Den Hartog formulation to optimise the TMD
 - Frequency $f_{TMD} = ?$ $\nu = \frac{1}{1+\mu}$ $\mu = m_{TMD}/modal mass$
 - Damping ratio $\xi = ?$

$$\xi = \sqrt{\frac{3\mu}{8(1+\mu)}} = \frac{b}{2\sqrt{km}}$$

- $m_{TMD} = ?$
- Top displacements reduced by 10
- Plot Bode diagram of the 1 dof system
- Compare with the 2 dof's (+TMD)

