07/12/2023, 10:56 Wooclap

VIB: Vibration damping

Number of participants: 0

	1. If the damping in a solution of vibration when it	structure is doubled, the level is excited at resonance is	0 correct answer out of 0 respondent
	multiplied by 2	0%	0 votes
⊘	divided by 2	0%	0 votes
	not changed	0%	0 votes
	multiplied by 4	0%	0 votes
	divided by 4	0%	0 votes
		structure is doubled, the level the structured is excited away is is	0 correct answer out of 0 respondent
	2. of vibrations when t	he structured is excited away	
	2. of vibrations when t from the resonances	the structured is excited away	out of 0 respondent
	2. of vibrations when to from the resonances divided by 2	the structured is excited away is is	out of 0 respondent 0 votes
	2. of vibrations when the from the resonances divided by 2 divided by 4	the structured is excited away is is 0%	out of 0 respondent 0 votes 0 votes

07/12/2023, 10:56 Wooclap

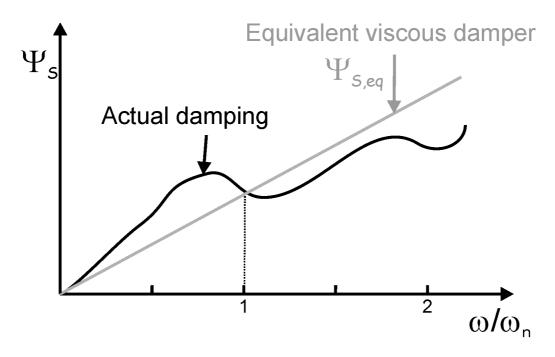
Juncivil and mechanics of global damping	ical engineering, a typical value factors for structures is	O correct answer out of 0 respondent		
0.01	0%	0 votes		
0.001	0%	0 votes		
0.1	0%	0 votes		
1	0%	0 votes		
When using a loss factor for the materials to 4. represent damping in a structure made of a single material, the damping coefficient is **O correct answer out of 0 respondent*				
constant for all modes	0%	0 votes		
linearly increasing with the frequency of the mode	0%	0 votes		
inversely proportional to the frequency of the mode	0%	0 votes		
Cite two methods which allow to determine the damping of the first mode of a structure. Which one can be used to estimate the damping of higher modes as well?		O correct answer out of 0 respondent		
	No answers in this question			
	Correct answer			
Logarithmic decrement method				

07/12/2023, 10:56 Wooclap

6. What is the difference between constrained and unconstrained layer damping treatment?

O correct answer out of 0 respondent

No answers in this question


Correct answer

Unconstrained layer damping uses the material to damp in extensional mode only, while constraining with an upper layer makes the material also dissipate energy due to shear strains.

9

7. Explain why the grey line crosses the black curve exactly at w/wn=1?

0 correct answer out of 0 respondent

No answers in this question

Correct answer

Because as the damping is only making a difference around the natural frequency of the system, it is only important that the equivalent curve matches the real one around these frequencies