VIB : Dynamic response computation

Number of participants: 36

= 1. In order to compute the dynamic response of a structure, one needs to (put in the right order)

Most frequent combinations:

2		8	2	•	8	2	3	8
1	Make a model of the structure	×	5	Identify geometry, material properties, boundary conditions	~	5	Identify geometry, material properties, boundary conditions	~
5	Identify geometry, material properties, boundary conditions and excitations	×	1	and excitations Make a model of the structure	~	1	and excitations Make a model of the structure	~
4	Obtain the mass and stiffness matrices (and damping if available)	~	4	Obtain the mass and stiffness matrices (and damping if available)	~	4	Obtain the mass and stiffness matrices (and damping if available)	~
8	Compute the eigenfrequencies and mode shapes	~	8	Compute the eigenfrequencies and mode shapes	~	8	Compute the eigenfrequencies and mode shapes	~
7	Project the equations of motion in the modal domain	~	3	Solve the equations of motion for each mode separately (time or frequency	×	2	Perform a truncation (keep only the important mode shapes)	×
2	Perform a truncation (keep only the important mode shapes)	~	7	domain) Project the equations of motion in the modal domain	×	3	Solve the equations of motion for each mode separately (time or frequency	×
3	Solve the equations of motion for each mode separately (time or frequency domain)	~	2	Perform a truncation (keep only the important mode shapes)	×	7	domain) Project the equations of motion in the modal domain	×
6	Determine the response at specific dofs based on the modal responses	~	6	Determine the response at specific dofs based on the modal responses	~	6	Determine the response at specific dofs based on the modal responses	~
				Correct answer				
 Identify geometry, material properties, boundary conditions and excitations 16 2 								

1	Make a model of the structure	14 上
4	Obtain the mass and stiffness matrices (and damping if available)	17 上
8	Compute the eigenfrequencies and mode shapes	11 🏜
7	Project the equations of motion in the modal domain	8 上

Wooclap

3. The modal response in the time domain is computed

1 correct answer

out of 27 respondents

 What are the ways to introduce damping in the model ? 	0 correct answer out of 30 respondents
modal damping	
Rayleigh damping	
Rayleigh	
Tuned damped mass	
Rayleigh damping, loss factor, modal damping	
Rayleigh damping	
Loss factor	
Rayleigh damping, Modal damping approach, loss factor	
Loss factor	
3 ways, modal damping, ond 2 weird names	
Rayleigh, modal, loss factor	
3 different types	
Loss factor	
Rayleigh, Loss factor and Modal Damping	
rayleigh damping	
modal damping	
Ryaleigh Damping, Loss factor, Experimental damping factor for each mode	
Loss factor	

2023, 08:46	Wooclap
loss factor	
Modal damping, rayleigh damping and loss factor	
Constant damping Modal damoing Rayleigh damping	
Viscous damping	
1. Rayleigh 2. Modal 3. Loss factor	
Rayleigh, etha/2, modal damping	
Rayleigh, modal and loss factor	
Loss factor, Rayleigh modal	
Rayleigh, modal	
Dampers	
1-rayleigh 2-loss factor 3-modal damping	

Raileygh damping

Correct answer

based on loss factors at the material level

6. For base excitation problems (such as earthquakes), the modal force is given by

17 correct answers

out of 23 respondents

