One DOF systems

Reduction of a system to a one DOF system

Example 1:

3

4

3

Reduction of a system to a one DOF system

Example 2:

4

Reduction of a system to a one DOF system

Example 3:

5

6

Reduction of a system to a one DOF system

Offshore platform

Simple harmonic motion

https://www.youtube.com/watch?v=gZ_KnZHCn4M

CDM - VIB - 1DOF

Harmonic signals

A periodic vibration of which the amplitude can be described by a sinusoidal function:

 $u(t) = a\cos(\omega t + \phi)$ $u(t) = a\sin(\omega t + \phi)$

is called an harmonic vibration with:

•amplitude a•angular frequency $\omega = 2\pi f$ •frequency f •period T = 1/f or f = 1/T •phase angle ϕ at t=0 •total phase angle $\omega t + \phi$

9

Harmonic signals

Representation in the complex plane:

$$u(t) = ae^{i(\omega t + \phi)}$$

= $a\cos(\omega t + \phi) + ia\sin(\omega t + \phi)$
$$u(t) = ae^{i\phi}e^{i\omega t} = Ae^{i\omega t}$$

A = $a\cos\phi + ia\sin\phi$
Independent of time

Projection of the rotating vector on the real axis is a cosine Projection of the rotating vector on the imaginary axis is a sine 9

Harmonic signals

the phase angle of u(t) is 90° behind v(t) the phase angle of v(t) is 90° behind a(t)

11

11

Harmonic signals

Equation of motion

Newton's law:

- Spring force: -kx
- External force f acting on the mass.

$$m\ddot{x} = \sum F_x \longrightarrow \qquad m\ddot{x} + kx = f$$

$$k \swarrow \qquad m \swarrow \qquad f$$

$$x=0 \qquad f$$

Equation of motion

What about the effect of gravity?

The displacement x is defined with respect to the equilibrium position of the mass subjected to gravity. The effect of gravity should therefore not be taken into account in the equation of motion of the system.

15

Free vibrations

 $m\ddot{x} + kx = 0 \qquad x = A e^{rt}$

Characteristic equation:

$$mr^2 + k = 0$$
 $r = \pm i\sqrt{k/m}$
 $x = A\cos\omega_n t + B\sin\omega_n t$ $\omega_n = \sqrt{k/m}$

•In the absence of external excitation force, the motion is oscillatory. The natural angular frequency ω_n is defined by the values of k and m•The motion is initialized by imposing initial conditions on the displacement and the velocity

17

Free vibrations

$$x(t) = x_0 \cos \omega_n t + \frac{\dot{x_0}}{\omega_n} \sin \omega_n t$$

Alternative representation:

$$x(t) = a\cos\left(\omega_n t + \phi\right)$$

 $\begin{array}{c} x_0 = a\cos\phi \\ \dot{x_0}/\omega_n = -a\sin\phi \end{array} \quad \tan\phi = -\frac{\dot{x_0}}{\omega_n x_0} \end{array}$

The motion can be described by a cosine function with a phase. The phase is a function of the initial conditions.

Harmonic excitation

$$f(t) = F e^{i\omega t} \qquad x(t) = X e^{i\omega t}$$
$$m\ddot{x} + kx = f$$
$$(k - \omega^2 m) X e^{i\omega t} = F e^{i\omega t}$$
$$X = \frac{F}{k - \omega^2 m}$$

1	C
	ũ

19

Harmonic excitation

$$X = \frac{F}{k - \omega^2 m}$$

$$X_0 = F/k \ (\omega = 0)$$
$$\omega_n = \sqrt{k/m}$$

- $\frac{X}{X_0} = \frac{1}{1 \omega^2 / \omega_n^2}$
- Positive if $\omega < \omega_n$
- Infinite if $\omega = \omega_n$
- Negative if $\omega > \omega_n$

Harmonic excitation

CDM - VIB - 1DOF

Breaking a glass of wine with sound

https://www.youtube.com/watch?v=10IWpHyN0Ok

23

Breaking a glass of wine with sound

https://www.youtube.com/watch?v=JiM6AtNLXX4

Is stiffer stronger ?

https://youtu.be/n9ULMIjvSIg

25

25

Is stiffer stronger ?

https://youtu.be/LV_UuzEznHs

Buildings resonance

https://youtu.be/pMr1MzSv044

CDM - VIB - 1DOF

Effect of damping on a building

https://youtu.be/HWpkaIB1fD0

29

29

Equation of motion

Damping force : $F_b = -b\dot{x}$

viscous damping

30

Free vibrations

Free vibrations

$$x(t) = e^{-\xi\omega_n t} \left(A\cos\omega_d t + B\sin\omega_d t\right)$$

Initial conditions: displacement x_0 velocity $\dot{x_0}$

$$x(t) = e^{-\xi\omega_n t} \left(x_0 \cos \omega_d t + \frac{\dot{x_0} + \omega_n \xi x_0}{\omega_d} \sin \omega_d t \right)$$

32

31

Number of oscillations after which the vibration amplitude is reduced by one half

Impulse response

$$\mathbf{F} \int_{\Delta t} \mathbf{Impulse} = \mathbf{F} \Delta t$$

$$m\ddot{x} + b\dot{x} + kx = f \qquad x_0 = 0, \ \dot{x_0} = 0$$

$$m\dot{x_0}|_{\Delta t} = F\Delta t - \int_0^{\Delta t} kx dt - \int_0^{\Delta t} b\dot{x} dt$$

$$\dot{x_0}|_{\Delta t} = \frac{F\Delta t}{m}$$
Equivalent to initial velocity at Δt

Impulse response

For an initial velocity, the response of the system is:

$$x(t) = \frac{e^{-\xi \omega_n t} \dot{x_0}}{\omega_d} \sin(\omega_d t)$$

with $\dot{x_0} = \frac{F\Delta t}{m}$

For a unit impulse $F\Delta t = 1$, we define the impulse response *h(t)*

$$h(t) = \frac{e^{-\xi\omega_n t}}{m\omega_d} \sin(\omega_d t)$$

$$(\omega_n = 1, \xi = 0.01)$$

$$(\omega_n = 1, \xi = 0.01)$$

37

Harmonic excitation

$$\ddot{x} + 2\xi\omega_n \dot{x} + \omega_n^2 x = f/m$$

$$x(t) = X e^{i\omega t}$$

$$f(t) = F e^{i\omega t}$$

$$(\omega_n^2 + 2i\xi\omega\omega_n - \omega^2)X = F/m$$

$$X = \frac{F}{m} \left(\frac{1}{\omega_n^2 + 2i\xi\omega\omega_n - \omega^2}\right) = \frac{F}{k} \left(\frac{1}{1 - \frac{\omega^2}{\omega_n^2} + 2i\xi\frac{\omega}{\omega_n}}\right)$$

$$= X_0 \left(\frac{1}{1 - \frac{\omega^2}{\omega_n^2} + 2i\xi\frac{\omega}{\omega_n}}\right)$$

38

37

Harmonic excitation

$$X_r = X_0 \frac{1 - \frac{\omega^2}{\omega_n^2}}{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\xi\frac{\omega}{\omega_n}\right)^2}$$
$$X_i = X_0 \frac{-2\xi\frac{\omega}{\omega_n}}{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\xi\frac{\omega}{\omega_n}\right)^2}$$

$$|X/X_0| = \sqrt{\frac{1}{\left(1 - \frac{\omega^2}{\omega_n^2}\right)^2 + \left(2\xi\frac{\omega}{\omega_n}\right)^2}}$$
$$\tan\phi = \frac{-2\xi\frac{\omega}{\omega_n}}{1 - \frac{\omega^2}{\omega_n^2}}$$

39

Harmonic excitation

40

Harmonic excitation

Rotating maching excitation

$$F = m_r e \omega^2 \sin(\omega t)$$

43

Rotating maching response

$$X = \frac{m_r e \omega^2}{k} \left(\frac{1}{1 - \frac{\omega^2}{\omega_n^2} + 2i\xi\frac{\omega}{\omega_n}} \right) \qquad \frac{mX}{m_r e} = \frac{\omega^2}{\omega_n^2} \left(\frac{1}{1 - \frac{\omega^2}{\omega_n^2} + 2i\xi\frac{\omega}{\omega_n}} \right)$$
$$|mX/m|_{0} = \frac{10^2}{10^2} \left(\frac{1}{1 - \frac{\omega^2}{\omega_n^2} + 2i\xi\frac{\omega}{\omega_n}} \right)$$

Equation of motion

Harmonic response

https://youtu.be/cfKwnTfNhog