Statics

w

1

2

Generalized coordinates

Degrees of freedom N : minimum number of coordinates necessary to provide the full geometric description of the system

Generalized coordinates: $q_{1}, q_{2}, \ldots q_{n}$

Minimum set of coordinates: $n=N$

$$
n>N \quad \longrightarrow \text { Need for kinematic constraints }
$$

Kinematic constraints

$$
\begin{array}{ll}
f\left(q_{1}, \ldots, q_{n}, t\right)=0 & \text { Holonomic constraints } \\
f\left(q_{1}, \ldots, q_{n}\right)=0 & \text { Scleronomic constraints }
\end{array}
$$

\longrightarrow Possibility to reduce to a minimum set

$$
\sum_{i} a_{i} d q_{i}+a_{0} d t=0 \quad \text { or } \quad \sum_{i} a_{i} d q_{i}=0 \quad \text { Non holonomic constraints }
$$

\longrightarrow Not possible to reduce to a minimum set

Example of non holonomic constraints

- 4 generalized coordinates

$$
x, y, \theta, \phi
$$

- All positions and orientations of the disk are possible

But, time derivatives of coordinates are not independent
$v=r \dot{\phi}$
$\dot{x}=v \cos \theta \longrightarrow$
$\dot{y}=v \sin \theta \quad d y-r \sin \theta d \phi=0$
Not all paths are possible to go from one configuration to another

VIRTUAL
 DISPLACEMENTS and VIRTUAL WORK

W

6

Virtual displacements

Infenitesimal change of coordinates

- Occuring at a constant time
- Compatible with the kinematic constraints
$\delta q_{i} \quad$ Virtual change of coordinates
$\longrightarrow \quad \delta f=\sum_{i} \frac{\partial f}{\partial q_{i}} \delta q_{i}=0 \quad$ For holonomic constraints

Virtual displacements

For a particle constrained to a frictionless surface

$$
f(x, y, z)=0 \quad \longrightarrow \frac{\partial f}{\partial x} \delta x+\frac{\partial f}{\partial y} \delta y+\frac{\partial f}{\partial z} \delta z=0
$$

$\nabla f=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)^{T} \quad$ is parallel to the normal to the surface

$$
\overline{\delta x}=\left(\delta_{x}, \delta_{y}, \delta_{z}\right)^{T} \quad \longrightarrow \quad \nabla f \cdot \overline{\delta x}=(\nabla f)^{T} \overline{\delta x}=0
$$

Virtual displacements

The reaction force vector $\overline{F^{\prime}}$ which constraints the particle to the surface is normal to the surface (no friction)

$$
\overline{F^{\prime}} \cdot \overline{\delta x}={\overline{F^{\prime}}}^{T} \overline{\delta x}=0
$$

\qquad The virtual work of the constraint forces is zero for any virtual displacement

Principle of virtual work

Consider a set of N particles with position vectors $\bar{x}_{i}, i=1, \ldots, N$ and the resultant force on each of these particles is \bar{R}_{i}

Static equilibrium

$$
\sum_{i=1}^{N} \bar{R}_{i} \cdot \overline{\delta x}_{i}=0 \quad \text { since } \quad \bar{R}_{i}=0 \quad \text { at equilibrium }
$$

Principle of virtual work

Static equilibrium

$$
\sum_{i=1}^{N} \bar{R}_{i} \cdot \overline{\delta x}_{i}=0
$$

The virtual work of the constraint forces is zero for any virtual displacement

$$
\begin{gathered}
\overline{F_{i}^{\prime}} \cdot \overline{\delta x}_{i}=0 \left\lvert\, \begin{array}{c}
\text { Applied forces }
\end{array} \quad\right. \text { Reaction forces } \\
\sum_{i=1}^{N} \bar{F}_{i} \cdot \overline{\delta x}_{i}=0 \quad \text { Virtual work of external forces is zero }
\end{gathered}
$$

Slider-crank

Problem: Find Z to maintain the slider-crank mechanism in static equilibrium with $\phi=30^{\circ}$.

$M=50 \mathrm{Nm}$ $\mathrm{Q}=35 \mathrm{~N}$ $\mathrm{r}=0.1 \mathrm{~m}$

Newtonian mechanics :

2 equations for translation 1 equation for rotation

X 2 bodies $=6$ equations
$\longrightarrow 5$ reaction forces $+Z=6$ unknowns

Slider-crank

Forces: Q, Z; Moment: M

$$
q_{1}=\varphi
$$

Virtual work:

$-M \delta \varphi-Q \delta y-Z \delta z$

$$
\begin{aligned}
& y=\frac{r}{2} \sin \varphi \longrightarrow \delta y=\frac{r}{2} \cos \varphi \delta \varphi \\
& z=r \cos \varphi+r \sqrt{4-\sin ^{2} \varphi}+b \longrightarrow \delta z=-r \sin \varphi\left(1+\frac{\cos \varphi}{\sqrt{4-\sin ^{2} \varphi}}\right) \delta \varphi \\
& -M \delta \varphi-Q \delta y-Z \delta z=0 \\
& \qquad=30^{\circ} \longrightarrow \quad Z=711.92 \mathrm{~N}
\end{aligned}
$$

