Wooclap

DOS : Continuous systems

Number of participants: 0

	1. A continuous syste	0 correct answer out of 0 respondent	
	as many eigenfrequencies as there are joints in the structure	0%	0 votes
~	an infinite number of eigenfrequencies	0%	0 votes
	it depends on the frequency band of the excitation signal	0%	0 votes

Image: Second structures Image: Second structure <td

If the length of a bar is divided by 4, its natural 3. frequency corresponding to traction-compression modes is

0 correct answer out of 0 respondent

	divided by 2	0%	I	0 votes
	multiplied by 2	0%	ł	0 votes
)	multiplied by 4	0%		0 votes
	divided by 4	0%		0 votes

If the length of a beam is divided by 2, its first
4. natural frequency corresponding to a bending mode shape is

0 correct answer out of 0 respondent

	divided by 2	0%	0 votes
	multiplied by 2	0%	0 votes
~	multiplied by 4	0%	0 votes
	divided by 4	0%	0 votes

	5. If the stiffness of a natural frequencie	0 correct answer out of 0 respondent	
	multiplied by 4	0%	0 votes
~	multiplied by 2	0%	0 votes
	divided by 2	0%	0 votes
	multiplied by 16	0%	0 votes

7. Modal truncation consists in

out of 0 respondent

computing the response of a system using only the		
modes which are excited by the external forces	0%	0 votes
computing the response of a system using only the first 5 modes	0%	0 votes
using a truncation of the Fourier series of the excitation signal	0%	0 votes

	8. When we truncat	0 correct answer out of 0 respondent	
	We change the number of resonance frequencies in the frequency band of interest	0%	0 votes
	We change the frequencies of the first 5 modes	0%	0 votes
 	We ignore the influence of out-of-band modes in the frequency band of	0%	0 votes

https://app.wooclap.com/events/XHRNLZ/results

interest

-	9. When performing practice consists in	0 correct answer out of 0 respondent	
	taking strictly the number of modes present in the frequency band of interest	0%	0 votes
S	taking the number of modes in the band [0 1.5*wmax] where wmax is the max frequency of the band of interest	0%	0 votes
	taking the number of modes in the band [0 wmax/1.5] where wmax is the max frequency of the band of interest	0%	0 votes
	Consider a bar for frequencies are at 10. Hz. You wish to co truncation in the How many modes	r which the ten first natural t 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 ompute the response using the modal basis, from 0 to 5 Hz. s should you use ?	0 correct answer out of 0 respondent
	5 modes	0%	0 votes

0%

0%

10 modes

8 modes

0 votes

0 votes