
DOS: Equivalent SDOF system

Number of participants: 0

Compute the first 5 modes shapes of

the flexible element

0 votes

2. The equivalent stiffness is then given by

0 correct answer out of 0 respondent

k=F/x where x is the displacement in the direction of motion at the location of the applied force

0 votes

0%

0%

k=F/x where x is the average displacement computed on the flexible element

0 votes

k= F*x where x is the displacement in the direction of motion at the location of the applied force

0% 0 votes

For a bar in traction with section A, 3. young's modulus E and length L, the equivalent stiffness is given by

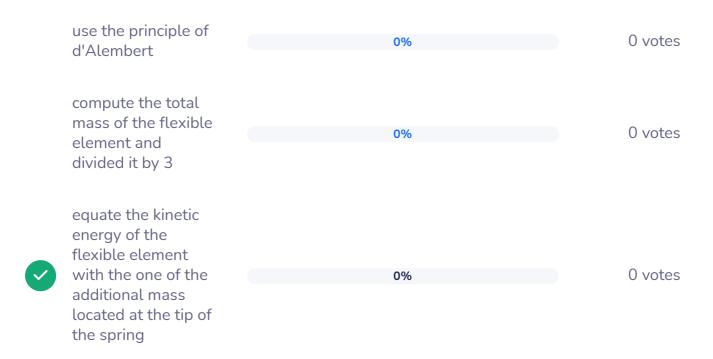
0 correct answer out of 0 respondent

k = E A L 0% 0 votes k = EA/L 0% 0 votes k = E/(A*L) 0% 0 votes k = 1/(EAL) 0% 0 votes

Consider a cantilever beam with a mass attached at the tip. If the length of the beam is doubled, the first natural frequency is

0 correct answer out of 0 respondent

BEAM DEFLECTION FORMULAE


BEAM TYPE	SLOPE AT FREE END	DEFLECTION AT ANY SECTION IN TERMS OF x	MAXIMUM DEFLECTION
1. Cantilever B	eam - Concentrated load P at	the free end	
$\begin{array}{c c} P & \downarrow & x \\ \hline y & I & \downarrow & 1 \end{array}$	$\theta = \frac{Pl^2}{2EI}$	$y = \frac{Px^2}{6EI}(3l - x)$	$\delta_{\max} = \frac{Pl^3}{3EI}$
 Cantilever Beam – Concentrated load P at any point 			
a P b δ_{max}	$\theta = \frac{Pa^2}{2EI}$	$y = \frac{Px^2}{6EI}(3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI}(3x - a) \text{ for } a < x < l$	$\delta_{\max} = \frac{Pa^2}{6EI} (3l - a)$
6. Beam Simply Supported at Ends – Concentrated load P at the center			
$\begin{array}{c c} \theta_1 & P & \theta_2 & X \\ \hline y & I & \delta_{max} \end{array}$	$\theta_1 = \theta_2 = \frac{Pl^2}{16EI}$	$y = \frac{Px}{12EI} \left(\frac{3l^2}{4} - x^2 \right)$ for $0 < x < \frac{l}{2}$	$\delta_{\max} = \frac{Pl^3}{48EI}$

multiplied by 2	0%	0 votes
divided by 2	0%	0 votes
·		
divided by 2 sqrt(2)	0%	0 votes
divided by 4	0%	0 votes

To compute the equivalent mass of a 5. flexible element simplified by a spring element, one needs to

O correct answer out of 0 respondent

6. When replacing a flexible element by a spring, the approximation is

0 correct answer out of 0 respondent

always valid	0%	0 votes
valid only above the first natural frequency of the flexible element	0%	0 votes
valid in a limited frequency band where the element's natural frequencies are not excited	0%	0 votes

A complex structure can be 7. represented by an equivalent massspring model using

0 correct answer out of 0 respondent

•	the principles of equivalent mass and spring if the structure is made of a large mass attached to a flexible element	0%	0 votes
•	a single mode approximation if the eigenfrequencies are well separated	0%	0 votes
	A division of the structure using single finite elements	0%	0 votes

8. When using single mode approximation, the equivalent mass and stiffness of the SDOF system depend on

0 correct answer out of 0 respondent

⊘	The value of the eigen frequency of the mode	0%	0 votes
	The average value of the modeshape considered	0%	0 votes
•	The value of the modeshape considered at the position and in the direction of the applied force	0%	0 votes