Wooclap

DOS : Finite Elements

Number of participants: 16

A finite element model with N degrees of freedom has

11 correct answers out of 12 respondents

For a global viscous damping model, the modal damping coefficient is

5 correct answers out of 11 respondents

If a structure is made of a single material with a loss factor eta=0.02, the modal damping coefficient for all modes is equal to

8 correct answers out of 9 respondents

6. When using local damping models **3 correct answers** out of 9 respondents the damping matrix in the modal 0 votes 0% domain remains diagonal the damping matrix in the modal 7 votes 78% domain is not diagonal the damping matrix can be made 56% 5 votes diagonal if the damping is small damping can be neglected when solving the 1 vote 11% equations of motion

For structures which undergo base 7. excitation, the mode shapes are computed

10 correct answers out of 11 respondents

