DOS: Tuned Vibration Absorbers

Number of participants: 11

1. A tuned mass damper is

8 correct answers

out of 8 respondents

In order to tune the frequency of a pendulum TMD, one needs to change its mass its length all of the above all of the above all of the above

Why?

The figure represents the FRF of a structure to which a damped TMD is attached, where the natural
5. frequency of the TMD is exactly tuned to the natural frequency of the structure. Is this an optimal tuning ?

0 correct answer out of 5 respondents

No because P and Q are not at the same height

no because P and Q aren't at the same height

No bcs P and Q don t have equal height

Non

No, because P and Q aren't aligned

Correct answer

It is not an optimal tuning, it can be improved by taking P and Q at the same height

What is the procedure to make an 6. optimal tuning of a TMD for any given structure ?

0 correct answer out of 1 respondent

-compute the maximal mass - tuned the frequency of the TMD -compute the stiffness of the TMD - compute the damping and deduce ${\sf b}$

Correct answer

Reduce the model to a SDOF system using a single mode approximation, and then use the analytical formulae of Den Hartog 1. — 2. — 3. —

In order to design a TMD and find its 7. optimal parameters, the procedure to follow is (put in the right order)

Most frequent combinations:

1		⊗
3	Choose a natural frequency of the system to be damped	×
5	Reduce the system to a SDOF system using single mode approximation (Keq, Meq).	×
2	Define the mass of the TMD (do not exceed a few % of the total mass of the main structure)	×
1	Determine the stiffness of the TMD using Den Hartog's rule nu=1/(1+mu)	~
4	Determine the damping coefficient of the TMD using Den Hartog's rule xi=sqrt(3mu/(8(1+mu)))	~

 2 Define the mass of the TMD (do not exceed a few % of the total mass of the main structure) 3 Choose a natural frequency of the system to be damped Choose a natural frequency of the system using single mode approximation 		Correct answer	
 Choose a natural frequency of the system to be damped Reduce the system to a SDOF system using single mode approximation 	2	Define the mass of the TMD (do not exceed a few % of the total mass of the main structure)	0 上
Reduce the system to a SDOF system using single mode approximation	3	Choose a natural frequency of the system to be damped	0 上
(Keq, Meq).	5	Reduce the system to a SDOF system using single mode approximation (Keq, Meq).	0 上
Determine the stiffness of the TMD using Den Hartog's rule nu=1/(1+mu)	1	Determine the stiffness of the TMD using Den Hartog's rule nu=1/(1+mu)	1 上
Oetermine the damping coefficient of the TMD using Den Hartog's rule xi=sqrt(3mu/(8(1+mu)))	4	Determine the damping coefficient of the TMD using Den Hartog's rule xi=sqrt(3mu/(8(1+mu)))	1 上