DOS : Turbulent wind excitation

Number of participants: 0

=	Assuming that the wind model is a 1. stationnary gaussian process, it is characterized by		0 correct answer out of 0 respondent
 	A mean and a standard deviation	0%	0 votes
~	A mean and a power spectral density	0%	0 votes
	A probability density function	0%	0 votes

	2. The standard deviation can be obtained knowing		0 correct answer out of 0 respondent	
	The mean value	0%	0 votes	
~	The PSD	0%	0 votes	
	Both the mean value and the PSD	0%	0 votes	

	3. A wind spectron 3. function of	um is given as a	0 correct answer out of 0 respondent
	An intensity factor	0%	0 votes
~	A non-dimensional frequency	0%	0 votes
	The maximum value of the wind speed	0%	0 votes

Wooclap

	4. The turbulence is		0 correct answer out of 0 respondent
~	constant with the height	0%	0 votes
	decreasing with the height	0%	0 votes
	increasing with the height	0%	0 votes

0 correct answer

out of 0 respondent

~	increases with the height	0%	0 votes
	decreases with the height	0%	0 votes
	is constant with the height	0%	0 votes

	6. The aerodynamic admittance is a factor which		0 correct answer out of 0 respondent
	represents the dynamic flexibility of an object	0%	0 votes
~	represents the total aerodynamic force acting on an object	0%	0 votes
~	is larger for small objects	0%	0 votes

The dynamic force acting on an 7. object due to turbulent flow requires to have access to

0 correct answer

out of 0 r	espondent
------------	-----------

The PSD of the wind	0%	0 votes
The aerodynamic admittance of the object	0%	0 votes
An aeroelastic model (quasi- steady)	0%	0 votes
All of the above	0%	0 votes