DOS: Vibration damping

Number of participants: 7

What are the sources 1. (internal/external) of damping in civil engineering structures?

0 correct answer out of 7 respondents

Isolation
joints
Joints
Joints
Material damping
Material
Matériel

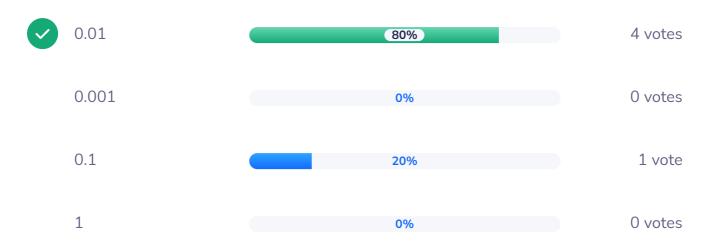
Correct answer

Material damping, damping in connections, damping from soil, flow interaction

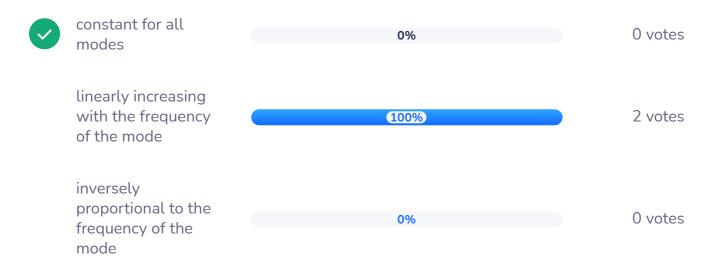
If the damping in a structure is 2. doubled, the level of vibration when it is excited at resonance is

2 correct answers out of 5 respondents

If the damping of a structure is doubled, the level of vibrations when the structured is excited away from the resonances is


3 correct answers out of 5 respondents

In civil and mechanical engineering, a4. typical value of global damping factors for structures is


4 correct answers out of 5 respondents

When using a loss factor for the materials to represent damping in a structure made of a single material, the damping coefficient is

0 correct answer out of 2 respondents

9

determine the damping of the first 6. mode of a structure. Which one can be used to estimate the damping of higher modes as well?

Cite two methods which allow to

1 correct answer out of 2 respondents

logarithmic decrement method

Logarithmic method Bandwidth method

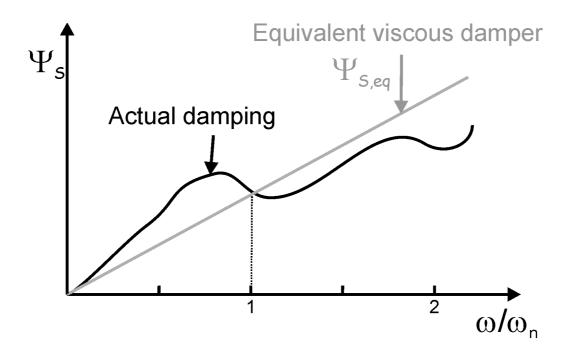
Correct answer

Logarithmic decrement method

What is the difference between
7. constrained and unconstrained layer damping treatment?

0 correct answer out of 1 respondent

The presence of a constraining layer or not


Correct answer

Unconstrained layer damping uses the material to damp in extensional mode only, while constraining with an upper layer makes the material also dissipate energy due to shear strains.

8. Explain why the grey line crosses the black curve exactly at w/wn=1?

0 correct answer out of 0 respondent

No answers in this question

Correct answer

Because as the damping is only making a difference around the natural frequency of the system, it is only important that the equivalent curve matches the real one around these