WIND LOADS

WAVE LOADS

ROTATING MACHINERY

LOADS ACTING ON AN OFFSHORE WIND TURBINE

Where it all comes together

- Offshore wind turbines are subjected to a variety of loads
 - Gravitational and inertial loads (self-weight)
 - Aerodynamic loads (mean wind speed, gusts, turbulence)
 - Hydrodynamic loads (waves, currents)
 - Actuation or operational loads (braking, 1P/3P, yawing)
 - Other loads that may occur e g. wake or impact loads

WIND LOADS

WIND EXCITATION PROFILE

Constant wind and turbulence

Wind forces:

$$f_{tot}(t) = \frac{1}{2}\rho C_d \Omega [U + u(t)]^2$$

$$\approx \frac{\frac{1}{2}\rho C_d \Omega U^2}{\text{constant}} + \frac{\rho C_d \Omega U u(t)}{\text{turbulent}}$$

AERODYNAMIC FORCES

Constant flow

- Constant inflow conditions
- Baseline constant force
- But dynamics excitation can still originate
 - Dynamic vortex excitation
 - Self-excited vibrations
 - Inflow itself is contant but moving body influences forces

- Turbulent flow
 - Dynamic force
 - Resonance

SPECTRAL CONTENT WIND LOADS

- Reference wind speeds, e.g. for design, are typically represented as Power Spectral Density (S_f(f))
 - Surface area represents the energy in a given frequency band
 - E.g. Kaimal Spectrum (Wind energy) , Davenport spectrum
- This is the spectrum of the windspeed, not the resulting force!
 - You'll need to pass through the equations listed before to get the forces
 - But these don't influence the frequency of the load
- Wind loads are typically low frequency (<0.1Hz) loads and "white"
 - However, gusts may result in impulse like loads

ADDITIONAL SOURCES OF TURBULENCE

Wake effects

- Reference spectra are typically for free inflow conditions
- Wake effects can result in increased turbulence intensities
 - Tall buildings : vortex shedding
 - Wind turbines in the wake of another wind turbine
- Turbulence from wake effects is not necessarily white noise
 - Force resulting can therefor be tonal

ADDITIONAL SOURCES OF TURBULENCE

Wake effects

• Example from the field

WAVE LOADS

REAL WORLD LOADS

SPECTRAL CONTENT OF WAVE LOADS

- At sea waves play a vital role in dynamic loading
- Waves are not sinoids
 - Complex interaction of long 'low-frequent' waves
 - Shorter high frequent waves
 - Complex loading patterns for e.g. breaking waves (more like impulses)

10

SPECTRAL CONTENT OF WAVE LOADS

JONSWAP spectrum

- Much like wind loads a reference spectrum is used to define the spectral content of the waves
 - Pierson-Moskowitz (Fully developed sea)
 - JONSWAP (DNV OS J101 : Standard wave spectrum)
- The JONSWAP is composed based on a given seastate (e.g. T_p is wave's peak period)
- The JONSWAP is not the force spectrum, but the sea elevation spectrum for a given sea state

SPECTRAL CONTENT OF WAVE LOADS

Transforming it into a load

- Use the wave spectrum to construct a water elevation timeseries
- Use the wave kinematics models (e.g. Airy wave) to calculate horizontal flow speed and acceleration
- Introducing the Morison Equation for a body moving in (horizontal) flow*

$$F = \rho V \dot{u} + \rho C_a V (\dot{u} - \dot{x}) + \frac{1}{2} \rho C_d A (u - x) |x - v|$$

- Includes the flow speed (u) and the flow acceleration (u) as well as the position and velocity of the system in the flow (x)
- Important hydrodynamic factors are the Coefficients of mass ($C_a = 1 + C_m$) and drag C_d

*For today's size of wind turbines Morison equation is not fully valid anymore, a diffraction correction needs to be applied

WAVE LOADING

Consider the wave load location

- Vibration levels vary along with the tides!
 - A ±12h cycle

WAVE LOADING

Consider the wave load location

- Waves introduce the largest loads close to the water surface
- When projecting the dynamics into the modal space we learn from the modal excitation:

$$F_i = \psi_i^T F$$

 The modal excitation will depend on the water level, so the tides influence the amount of vibration!

WAVE LOADING

Consider the wave load location

- Waves do not necessarily come from a single direction
- Waves also don't necessarily come from the same direction as the wind direction : Wind-Wave misalignment

ROTATING MACHINERY

Forces originating from a rotating machinery

- Common example: Mass unbalance
 - Center of gravity \neq Axis of rotation

 $F = Mr\omega^2$

- The resulting force is thus:
 - Proportional to the severity of the unbalance
 - Both in mass (M) or off-centricity (r)
 - Proportional to the square of the rotational speed
 - Tonal: at exactly the frequency of rotation (1p)
 - Force in the plane of rotation
- Permissible unbalance typically expressed through the Balancing Class of the machine (ISO 21940-3)

Not all unbalances are mass

- Basically any unbalance in the forces can result in a periodical force at the rotational speed
- For wind turbines: e.g. Aerodynamic unbalance
 - Center of thrust \neq Axis of rotation
 - Misaligned/damaged blade
- The resulting force is:
 - At the frequency of the rotor **1p**
 - In the wind direction (orthogonal to the plane of rotation)
 - Dependent on the severity of the misalignment

The gain of running a balanced machine

Source: Berlinwind

Tower shadowing effect

- For wind turbines an additional load comes from the so-called Tower/blade shadowing effect
- As a blade passes in front of the tower the wind load that acts on the tower is caught by the blade
- The resulting force is:
 - In the wind direction
 - At 3 times the rotor frequency (3p)
 - (Footnote) for a three bladed upwind turbine

IMPACT ON DESIGN

Balancing the various loads

- Designing the offshore wind turbine
- Loads:
 - Wind spectrum
 - Rotor/Aerodynamic unbalance
 - Blade shadowing effect
 - Wave loads

Balancing the various loads

• The challenge with growing turbine sizes

Frequency [Hz]

When parking your turbine hurts you

- The vibration levels of an entire wind farm are shown below for a period of 2 days
- One turbine (dark blue) stands out with elevated vibration levels

When parking your turbine hurts you

