Wooclap

Number of participants: 36

When excited with a harmonic force at a
frequency below the natural frequency of an undamped 1DOF system, the motion of the mass is

13 correct answers out of 21 respondents

	When excited with frequency above th undamped 1DOF sy is	a harmonic force at e natural frequency /stem, the motion of	a of an the mass	10 correct answers out of 19 respondents
~	180° out-of-phase with the excitation		53%	10 votes
	90° out-of-phase with the excitation		21%	4 votes
	60° out-of-phase with the excitation		0%	0 votes
	random		26%	5 votes
	For an undamped 1 a harmonic force at its natural frequence is	DOF system, when e a frequency corresp cy, the amplitude of	excited with onding to the motion	17 correct answers out of 21 respondents
	in phase with the excitation force	_	14%	3 votes
	180° out-of-phase with the excitation force		5%	1 vote
~	infinite		81%	17 votes
	8. It is possible to bre by	ak a wine glass with	your voice	25 correct answers out of 25 respondents
	exciting it at very high frequency		0%	0 votes
	exciting it at low frequency		0%	0 votes
~	exciting it at one of its natural frequencies		100%)	25 votes

https://app.wooclap.com/events/IOBHGU/results

9 votes

12. Where is the resonant frequency of the 1DOF system on this diagram ?

21 respondents

13. What method should you use to compute the time domain response of a SDOF when the force applied to it is arbitrary ? What kind of mathematical operator does it involve ?

Laplace inverse			
h(t)*u(t)			
Convolution			
We use FFT			
Square state representation			
-			
T>0 + Fourier			
Convolution product with impulse response			
Convolution with impulse resp.			
Space state representation			
Z transform, turn the integration into a convolution			
Phasors			
Impulse			
Inpulsive response and integrate it			
Convolution			
Convolution			
Correct answers			

Duhamels's integral

Wooclap

convolution

To which area of the bode plot does the time 14. domain response presented in the graph correspond to ?

20 respondents

Bode plot vs time domain response 10² 0. k 0.01 (f) ξ=0.1 -0.5 |X/X₀| ξ=0.3 -1 ` 0 100 200 300 400 500 t Transient Steady-state regime 1.5 1.5 2.5 3.5 4.5 2 3 -ξ=0.01 -50 0.5 ω ξ=0.1 φ(°)-100 x(t) ξ=1 0 ω_n -150 -200 L -0.5 ω_n Ξ 3.5 0.5 1.5 2 2.5 4.5 ω/ω_n -1 -1.5 L 100 200 300 400 500

t

https://app.wooclap.com/events/IOBHGU/results

0

15. Which part of the time domain response actually corresponds to the hypothesis in the Bode plot ?

17 respondents

16. For a sine sweep excitation, which area of the time domain response represents resonance ?

12 respondents

Sine sweep excitation

For a SDOF system with an imposed motion at 17. its base, in terms of which unknown is the equation of motion generally written ? Why ?

18 correct answers out of 21 respondents

