VIB : Continuous systems

Number of participants: 27

1. A continuous system has

20 correct answers
out of 21 respondents
as many eigenfrequencies as there are joints in the 0% \%

0 votes structure
an infinite number of eigenfrequencies
it depends on the frequency band of the excitation signal5%

21 respondents

Can you match the boundary condition type for
 2. Can you match the boundar

(B) Hinged
car

Bridge support

C
Rolling

15 correct answers
Wind turbine

A
Clamped

If the length of a bar is divided by 4, its natural

Abstract

3. frequency corresponding to traction-compression modes is

10 correct answers out of 19 respondents
divided by 2
0\%

10 votes

6 votes

If the length of a beam is divided by 2, its first

4. natural frequency corresponding to a bending mode shape is

14 correct answers out of 21 respondents
divided by 2
0%
0 votes
multiplied by 2
29\%
6 votes
multiplied by 4
\square
67\%
14 votes
divided by 4
\square
5\%
1 vote

11 correct answers out of 20 respondents
multiplied by 4 \square 5\%
1 vote
multiplied by 2
55\%
11 votes
divided by 2
multiplied by 16
\square
15\%
3 votes
6. From which kind of continuous system are these the modeshapes?

$$
n=1
$$

\qquad A simply supported beam
$\xlongequal{\eta}$ A cantilevered beam19\%

7. Modal truncation consists in

10 correct answers
out of 18 respondents
computing the response of a system using only the modes which are excited by the external forces
computing the response of a system using only the first 5 modes
using a truncation of the
Fourier series of the \square
excitation signal

8. When we truncate, what error do we introduce?

13 correct answers
out of 20 respondents

We change the number of resonance frequencies in the 35% 7 votes frequency band of interest

We change the frequencies of the first 5 modes
0%
0 votes

We ignore the influence of
out-of-band modes in the
65\%
13 votes
frequency band of interest

9. When performing modal truncation, the usual practice consists in

9 correct answers out of 21 respondents
taking strictly the number of modes present in the 10\%

2 votes
frequency band of interest
taking the number of modes in the band [0 1.5*wmax]
where wmax is the max 433 9 votes frequency of the band of interest
taking the number of modes in the band [0 wmax/1.5] where wmax is the max frequency of the band of interest

Consider a bar for which the ten first natural frequencies are at $1,2,3,4,5,6,7,8,9$ and 10
10. Hz. You wish to compute the response using the truncation in the modal basis, from 0 to 5 Hz . How many modes should you use?

20 correct answers out of 21 respondents

8 modes

