VIB : Equivalent SDOF system

Number of participants: 30

2. The equivalent stiffness is then given by

22 correct answers

out of 22 respondents

For a bar in traction with section A, young's **6 correct answers** 3. modulus E and length L, the equivalent stiffness is out of 8 respondents given by k = E A L0 votes 0% k=EA/L 6 votes 75% k=E/(A*L)13% 1 vote k=1/(EAL)1 vote 13%

Consider a cantilever beam with a mass attached4. at the tip. If the length of the beam is doubled, the first natural frequency is

11 correct answers

out of 15 respondents

BEAM	DEFI	ECTION	FORMULAE

BEAM TYPE	SLOPE AT FREE END	DEFLECTION AT ANY SECTION IN TERMS OF x	MAXIMUM DEFLECTION		
 Cantilever Beam – Concentrated load P at the free end 					
P δ_{max}	$\theta = \frac{Pl^2}{2EI}$	$y = \frac{Px^2}{6EI} \left(3l - x \right)$	$\delta_{\max} = \frac{Pl^3}{3EI}$		
2. Cantilever Beam – Concentrated load P at any point					
$a \xrightarrow{P} b \xrightarrow{\delta_{max}} \delta_{max}$	$\theta = \frac{Pa^2}{2EI}$	$y = \frac{Px^2}{6EI} (3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI} (3x - a) \text{ for } a < x < l$	$\delta_{\max} = \frac{Pa^2}{6EI} (3l - a)$		
6. Beam Simply Supported at Ends – Concentrated load P at the center					
$\begin{array}{c c} 0_{i} & P \\ \hline \\ y \\ y \\ l \\ \end{array} \begin{array}{c} 0_{i} \\ 0_{i} \\ \hline \hline \\ 0_{i} \\ \hline \\ 0_{i} \\ \hline \hline \\ 0_{i} \\ $	$\theta_1 = \theta_2 = \frac{Pl^2}{16EI}$	$y = \frac{Px}{12El} \left(\frac{3l^2}{4} - x^2 \right)$ for $0 < x < \frac{l}{2}$	$\delta_{\max} = \frac{Pl^3}{48EI}$		

86%

valid in a limited frequency band where the element's natural frequencies are not excited

18 votes

	Consider the wing 9. most suited to red system ?	1 correct answer out of 20 respondents	
	The equivalent mass and stiffness approach using static computation and equivalence of kinetic energy	45%	9 votes
	The single mode approximation	50%	10 votes
~	It depends on the type of aircraft considered	5%	1 vote

 What are the necessary assumptions to model a car as a SDOF mass-spring-damper system ? 	13 respondents
No slip	
Negligible Vertical Motion of the Wheels	
Negligible Vertical Motion of the Wheels	
Consider concentrated mass	
M = weight of the car	
Tiers damping, spring and mass with car mass, spring and damping	
Motion is in one direction only	
Suspension has constant stiffness	
No aerodynamic resistance	
The wheel does not have mass	
One direction of oscillation	
Depends on the car	
Mass uniform distributed	

What type of model would you use to model the dynamic response of a wind turbine ?

0 respondent

No answers in this question