VIB : Vibration sources and Fourier Analysis

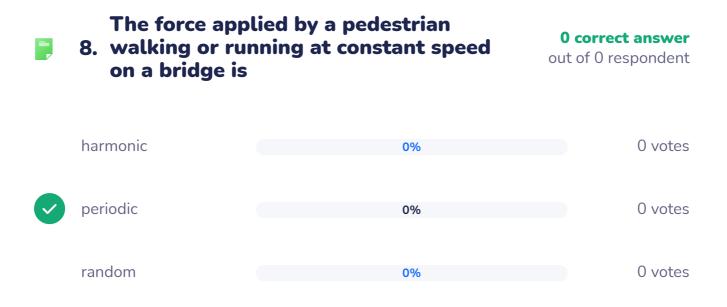
Number of participants: 0

2. After watching the video I think that **0** correct answer = out of 0 respondent I understood most 0 votes \checkmark 0% of the content I understood the general concepts 0 votes 0% but did not grasp the mathematics l did not understand the 0 votes \checkmark 0% concepts nor the

3.The following are examples of free
mechanical vibrations0 correct answer
out of 0 respondent

 	A bell ringing	0%	0 votes
	A worker using a jack hammer	0%	0 votes
 Image: A start of the start of	The bar of a football goal vibrating after being hit by a ball	0%	0 votes
	Vibrations due to a spinning washing machine	0%	0 votes

mathematics


	4. Which of the are true ?	following statements	0 correct answer out of 0 respondent
 	A harmonic excitation is a special case of a periodic excitation	0%	0 votes
	A periodic excitation is a special case of a harmonic excitation	0%	0 votes
	The period of a random signal is much smaller than for an harmonic one	0%	0 votes
~	A random force signal has an infinite period	0%	0 votes

	5. A rigid rotatin force that is	J	0 correct answer ut of 0 respondent
~	periodic	0%	0 votes
~	harmonic	0%	0 votes
	random	0%	0 votes

	6. Any rotating machine produces a		0 correct answer out of 0 respondent
	harmonic force	0%	0 votes
 	periodic force	0%	0 votes
	random force	0%	0 votes

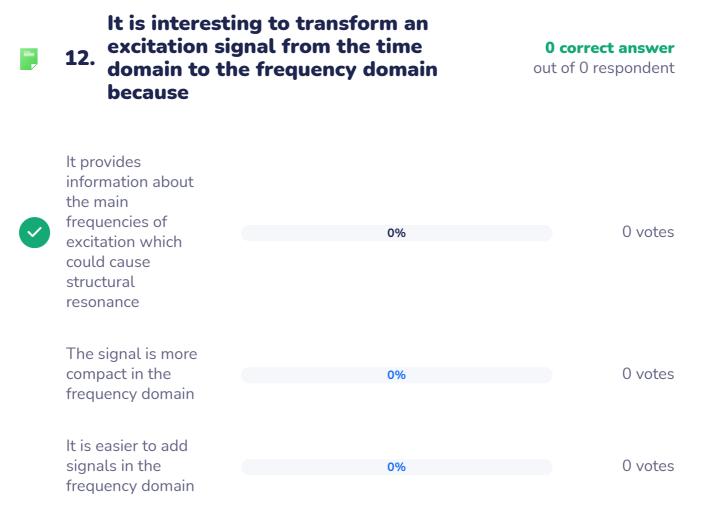
When the rotational speed of a 7. machine increases, the frequency of the forces produced 0 correct answer out of 0 respondent

 	Increases proportionally	0%	0 votes
	Decreases proportionally	0%	0 votes
	Increases with the square of the rotational speed	0%	0 votes
	Decreases with the square root of the rotational speed	0%	0 votes

9. The main frequency of excitation for walking pedestrians is around

0 correct answer out of 0 respondent

No answers in this question

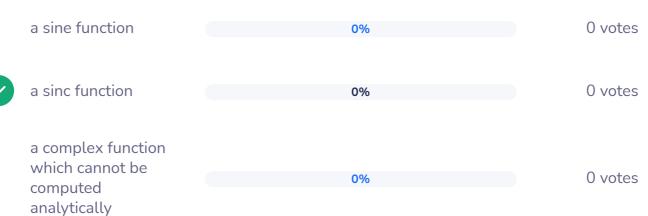

Correct answer

Between 1 and 3

The discrete Fourier transform 0 correct answer 10. applies to out of 0 respondent any type of signal 0 votes 0% only random 0 votes 0% signals only periodic 0 votes 0% signals

11.The discrete Fourier transform
computes amplitudes of sine and
cosine functions at frequencies
which are0 correct answer
out of 0 respondent

~	multiples of the fundamental angular frequency = 2pi/T	0%	0 votes
	odd multiples of the fundamental frequency = 2pi/T	0%	0 votes
	multiples of the fundamental frequency = 1/T	0%	0 votes



13.	The continuous Fourier transform	0 correct answer
, 13.	applies to	out of 0 respondent

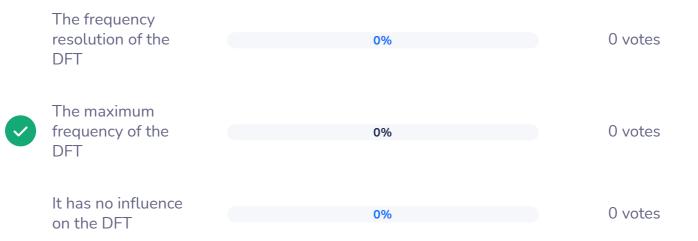
any type of signal	C	0%	0 votes
periodic signals		0%	0 votes
only			
harmonic signals			. .
only	(0%	0 votes
it depends on the type of excitation of		0%	0 votes
the system		J 70	0 voles

https://app.wooclap.com/events/PYHHUX/results

14. The continuous Fourier transform of a rectangle (pulse) is 0 correct answer out of 0 respondent a cosine function 0% 0 votes

For a SDOF system (and MDOF), the 15. Fourier transform of the impulse response h(t)

0 correct answer out of 0 respondent


	allows to extract the information about the natural frequency	0%	() votes
	cannot be computed analytically	0%	() votes
~	is the transfer function X(w)/F(w)	0%	() votes

I	16. on sampled s	Fast Fourier Transform signals, you can frequency resolution by	0 correct answer out of 0 respondent
	decreasing the time step of the sampling signal, keeping the total measurement time constant	0%	0 votes
	increasing the time step of the sampling signal, keeping the total measurement time constant	0%	0 votes

increasing the measurement time, whatever the time 0% 0 votes step of the sampling signal

When using DFT, the time step of 17. the sample signal has an influence on

