VIB : Equivalent SDOF system

Number of participants: 27

17%

30%

the

eigenfrequencies are well separated

A division of the structure using

single finite elements

4 votes

7 votes

In the case of a rigid mass with a 2. flexible element, In order to compute an equivalent stiffness, one needs to

11 correct answers out of 16 respondents

Apply a static force at the location where the mass is 11 votes \checkmark 69% attached and in the direction of the motion of the mass Apply an harmonic force at the location where the mass is 5 votes 31% attached and in the direction of the motion of the mass Compute the first 5 modes shapes of 0 votes 0% the flexible element

For a bar in traction with section A,4. young's modulus E and length L, the equivalent stiffness is given by

Consider a cantilever beam with a mass attached at the tip. If the length of the beam is doubled, the first natural frequency is

BEAM DEFLECTION FORMULAE				
BEAM TYPE	SLOPE AT FREE END	DEFLECTION AT ANY SECTION IN TERMS OF x	MAXIMUM DEFLECTION	
1. Cantilever I	Beam - Concentrated load P at	the free end		
P δ_{max}	$\theta = \frac{Pl^2}{2EI}$	$y = \frac{Px^2}{6EI}(3I - x)$	$\delta_{\rm max} = \frac{P l^3}{3 E I}$	
2. Cantilever Beam – Concentrated load P at any point				
	$\theta = \frac{Pa^2}{2EI}$	$y = \frac{Px^2}{6EI} (3a - x) \text{ for } 0 < x < a$ $y = \frac{Pa^2}{6EI} (3x - a) \text{ for } a < x < l$	$\delta_{mm} = \frac{Pa^2}{6EI}(3l-a)$	
6. Beam Simp	ly Supported at Ends - Concent	trated load P at the center		
0, + P 1 0, + P 0, + 0, + 3 0, + 0, + 0, + 3 0, + 0, + 0, + 0, + 0, + 0, + 0, + 0, +	$\theta_1 = \theta_2 = \frac{Pl^2}{16El}$	$y = \frac{Px}{12EI} \left(\frac{3l^2}{4} - x^2\right)$ for $0 < x < \frac{l}{2}$	$\delta_{max} = \frac{Pl^3}{48EI}$	

7. When replacing a flexible element by a spring, the approximation is

12 correct answers out of 18 respondents

	When using approximati and stiffnes depend on	3 correct answers out of 14 respondents	
~	The value of the eigenfrequency of the mode	29%	4 votes
	The average value of the modeshape considered	7%	1 vote
~	The value of the modeshape considered at the position and in the direction of the applied force	100%	14 votes

9. Consider the wing of an aircraft, which method is most suited to reduce it to an equivalent SDOF system ?

3 correct answers

out of 19 respondents

What are the necessary assumptions to model a car as a SDOF mass-spring-damper system ?

0 correct answer out of 10 respondents

Concentration of mass

The equivalent stiffness and mass

Single degree of freedom, the vertical motion only

equivalent stiffness and mass approach

Model tire using a spring

The upper part is rigid + flexible suspensions(spring)

Small displacements

Motion in only one direction (1D)

No variation of mass

Finite elements

Correct answer

The body and the wheels needs to be considered as rigid, and the motion restricted to vertical displacement.

What type of model would you use 11. to model the dynamic response of a wind turbine ?

SDOF system model

Mass(top) + spring(column)/ also as bar with mass on top

Finite Element model

Mass +2 springs (vertical & horizontal)

Beam and mass at the top

Finite element model

Continuous model

Correct answer

You can use a cantilever beam, but you should consider the mass at the tip, so a beam finite element model is probably the best option.