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1 Introduction

Vibration refers to mechanical oscillations about an elguilm point. The oscillations may be peri-
odic such as the motion of a pendulum or random such as themamieof a tire on a gravel road. In
practice, every object is subject to a certain level of ibrg which can often not be seen with the
naked eye. This does not mean that this phenomenon is nottempcand it deserves, in many cases,
to be studied. Examples of objects creating vibration im@ley life are a shaver, a vibrator in a cell
phone, a loudspeaker, tools, rotating machines and vehici@otion such as trains or trams.

1.1 Mechanism of Vibrations

The underlying mechanism of vibrations consists in thedfiemof the potential energy into kinetic
energy, and vice versa. Examples of the mass-spring systentha pendulum are illustrated in

Figured1 and]2.
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Figure 1: Transfer of the potential energy to kinetic eneagyg vice versa in the mass-spring system
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Figure 2: Transfer of the potential energy to kinetic enexggl vice versa in the pendulum



1.2 Sources of excitations

In order for a body to vibrate, it has to be excited by a sourthe sources of excitation can be

divided in two main categories : free vibrations and forcéatations. Free vibrations correspond to

the case where the vibration is caused by an initial sourdehnt then removed so that the structure
vibrates without any force acting on it. Forced vibratiowsrespond to the case where an excitation
is permanently applied to the structure.

1.2.1 Free vibration

A free vibration is generally induced by either an extermaté with a very short duration (shock),
or by an initial displacement or velocity imposed to the cfiee. The simplest example is the mass-
spring system: when the mass is pulled downwards, an initsglacement is imposed (Figurke 3a).
Once the mass is released, it starts vibrating freely. Imélagi way, hitting a bell for a very short
time makes it vibrate freely. The mechanical vibration ésmitted to the air and a sound is emitted.

(Figure[3b)
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Figure 3: Examples of free vibrations: a) Free response ofssmpring system due to an initial
displacement b) Free response of a bell due to an initialkshoc

1.2.2 Forced vibrations

In forced vibrations, we can distinguish between threesdifit types of excitation signals: harmonic,
periodic, and random signals (Figlrde 4).
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Figure 4: Three different types of forced excitation signal
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e Flexible mounts

F, = mew? cos(wt)

F, = mew?sin(wt)

Figure 5: Forces generated by the unbalance of a rotatingirmeac

e Harmonic excitation : the force applied to the body is a sina cosine function with a given
period T. Rigid rotating machines are an example of sourdeaaihonic excitation signal: as
the rotor is never perfectly balanced (its center of graditgs not correspond to its geometric
center), there exists an inertial force due to the unbalahkis force has a radial direction and
an amplitudenew? (m= mass of the spring;= distance between the center of gravity and the
rotation centerw = rotational speed, Figufg 5) and can be decomposed intatiaaleand an
horizontal force varying with the rotation angle. Each acfgd components is a sine or cosine



function and is transmitted to the environment through tkatitbns of the rotating machine.
This excitation is therefore periodic and harmonic.

« Periodic excitation: this corresponds to excitation algrwhich repeat themselves over time
with a certain period T. As an example, piston engines géag@eriodic excitation (the period
corresponding to one full rotation of the crankshaft) wh&hot made of a single sine or cosine
component (existence of harmonics of the fundamental &ecy).

« Random excitation: a random excitation signal has no foratdal frequency and one cannot
distinguish a pattern which repeats itself over time. Exaspre the forces generated by wind,
earthquakes (Figufé 6), traffic, waves etc.
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Figure 6: Example of excitation signal induced by an eardftguwon a building
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1.3 Vibration sources in civil engineering
In civil engineering, one can distinguish between intearad external sources of vibrations:
* Internal sources:

— Ventilation systems

Elevator and conveyance systems

Fluid pumping equipment

Machines and generators
— Aerobics and exercise rooms, human activity

* External sources:

— Seismic activity

— Subway, road and rail systems, airplanes
— Construction equipment

— Wind, Waves

Traditionally, vibrations have not been a big concern inl @ngineering, except for high levels
of vibrations caused by earthquakes. In recent years haowinesources and levels of excitations
have increased, while at the same time the comfort demamrdmeareasing and health issues are
appearing. In some cases, novel high precision technalagiguire very low levels of vibrations.
Another important change is the fact that new designs otstras make them more susceptible to



vibrations. For example, where in the past, bridges wheissiva structures, they tend to a more and
more slender design aimed at optimising the use of matdFaisire[T). The drawback is that such a
design makes them much more prone to vibrations. The usevef nmaterials such as composites is
also responsible for a lower level of damping, hence morgatiitns.

An old arch bridge

The Millau viaduct

Figure 7: Evolution in the design of bridges: from masgikép : //www.bridge2faith.net] to
slender structurehttps : // frwikipedia.org/wiki/Viaduc-de_Millau]

We detalil here below a few examples of structures where tiiims are problematic:

» The Millenium Bridge (Figure[8) in London is a steel suspension bridge for peidesticross-
ing the River Thames. During its opening in June 2000, it wagested to very high levels
of lateral vibrations due to pedestrians walking on thedwidThe bridge was closed until a
solution to the problem could be implemented.

* In cable-stayed bridgeqFigure[8), wind excitation can cause excessive levelsloftions in
the cables. Damping systems are often implemented in codsive this problem.

* In high-rise buildings, wind excitation can cause an oscillatory motion which igideental
for comfort of the inhabitants in the top levels. These dties are also more vulnerable to
earthquake excitation. An example is the Taipei 101 (Fi@rbuilding (509 m) in which a
massive device called "pendulum tuned mass damper” hasibggamented. The device is
designed to damp the vibrations due to earthquakes whidd @opact the structural integrity
of the building.

* The originalTacoma Narrows bridge opened on July 1, 1940 and collapsed into the Puget
Sound in Pierce County, Washington on November 7 1940 (E[BurThe collapse was due to
high wind conditions which caused excessive vibrationdileato the collapse of the bridge.



Millenium Bridge (London) Cable-stayed bridge

Figure 8: The Millenium bridg@https : // fr.wikipedia.org/wiki/Millennium_Bridge_(Londres)]
and a cable-stayed bridge (Dongting, Chifadtp : //sitesavisiter.com/pont — du — lac —
dongting]

Taipei 101 Collapse of the Tacoma Narrows bridge

Figure 9: The Taipei building [http://blog.artnn.ru] andet original Tacoma Narrows bridge
[http://www.maxisciences.com/construction/pont-deema-washington-1948rt3460.html]

1.4 Positive vs negative effects of vibrations

We have already listed negative aspects of vibrations: sskeelevels of vibrations can cause fatigue,
health and comfort issues, degrade the performance ofnsgséed in the most catastrophic case
can lead to collapse. There are however some cases in wiicitions are useful, examples are a
loudspeaker (Figufe_10) which requires vibrations to poedsound, an electric toothbrush, a sander,
musical instruments, etc. Another example is the use of-figdjluency vibrations in formula one
engines to reduce the friction.
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Figure 10: A loudspeaker uses vibrations of a moving mengtamproduce sound

1.5 Afirst feeling about vibrations through movies and expeiments

The reader is suggested to have a look at the following magean introduction to the concepts
which will be developed in the coming chapters. The moviescdlee what is a simple harmonic
motion, and introduce the concept of resonance.

Si nmpl e harnoni ¢ notion:
htt p://ww. yout ube. com wat ch?v=SzZ541Luqg4nE

Mass spring system (finger excitation):
http://ww. yout ube. conf wat ch?v=_XTj ePLVFI

2 Tools to describe an deal with dynamic signals

2.1 Harmonic signals

A periodic vibration of which the amplitude can be describgd sinusoidal function:

u(t) = Acos(wt + ¢)
u(t) = Asin(wt + ¢)

is called aharmonic vibration with:
e amplitudea
e angular frequency = 2x f

« frequencyf

periodT’ =1/for f=1/T

phase angle att = 0

total phase anglet + ¢

10



Harmonic signals are more conveniently represented in dingptex plane. In order to do that,
one writes: '
u(t) = ae@ttd) — ¢ cos(wt + @) + 1 asin(wt + ¢)

which can be written:
u(t) = aee™t = Aet

where A
A = ae'® = acos(¢) + iasin(¢)

which introduces the complex amplitudé which is independent of time (Figute]11). Note that
introducing imaginary numbers is a kind of artefact: thetists no vibration which is imaginary, all
vibration signals are real. The important point to remenidb#rat the complex amplitudé carries the
information of both the amplitude and the phase angileand therefore contains all the information
about the harmonic signal.

ot
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Figure 11: Representation of the harmonic signal as a conmpimberA with a phase and amplitude
in the complex plane

The use of the complex notation is particularly useful whaa wishes to calculate the first and
second derivatives of a harmonic signal with respect to:time

u(t) = Ae™t
o(t) = dut) = iwAe™! = jwu(t)
dt
a(t) = dfh(f) = —w?Ae™ = —wPu(t)

The displacement, velocity and accelerations are reptedémthe complex plane in Figurel12. One
can see clearly that the derivation introduces a phasedf8fl° together with a multiplication of the
amplitude by a factow. The signals are represented in the time domain for a phage afyy = 0 in

Figure[13.
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Figure 12: Displacement, velocity and acceleration represl in the complex plane
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Figure 13: Displacement, velocity and acceleration regresd in the time domains(= 0)
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2.2 Harmonic analysis: the discrete Fourier transform

Letu(t) be a periodic function of period. It can be decomposed into a discrete Fourier series of the
form:

u(t) = ap + Z [ar, cos(nwot) + by, sin(nwot)] (1)
n=1
with
_
wo = T

12



is the fundamental frequency and

® = 7 / @)
an, = % / ) cos(nwot)dt 3
b, = T/o u(t) sin(nwot)dt 4)

In other words, a peridic function can be represented by famt& sum of sine and cosine functions
of discrete frequencies which are multiples of the fundamleéfrequencyw, (Figurel14).

f(t) &
period T
e
cos (Naot) sin (No,t)
X cos ( A sin (w,t)

cos (2m,t)

N : . sin (2o,t)

»

lad 4
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Figure 14: Fourier decomposition of a periodic signal

13



An alternative formulation is given by:

— ?0+; ap, cos(nwot) + by, sin(nwot)] (5)
o (T
w = 2 / u(t)dt
0
o (T
a, = —/ u(t) cos(nwot)dt
T Jo
o (T
b, = —/ u(t) sin(nwot)dt
T Jo

2.2.1 Amplitude and phase formulation

Equation[(b) can be written in the form of a single cosine fiamcwith amplitude an phase as follows:

u(t) = do + i dy, cos(nwot — ¢p,) (6)

n=1

where one can show (left as a demonstration) that:

dy = =

dy, = a2+

on = tgil (b_n)
Qnp,

Equation[(b) can also be written in a complex form. Using ti®#ing trigonometric equalities,

2.2.2 Complex formulation

inwot + efinwot

2

e

cos(nwot) =

inwot —inwot

(& — €

24

sin(nwot) =

one gets:

mwot + e—znwot einwot o e—inwot
i - bn 2

0 o
u)) = L4y

n=1

- an n znwot a’n+1bn —inwot
£y r

%o
2 2

n=1

which can also be written

14



with

ag
co — ?
an — iby,
C =
" 2
an + iby,
C—py = —
" 2
Subsitutingag, a,, andb,, using [2E4), we get:
1 [T
= — = — t)dt
T /0 "
'b 1 [T 1 [T ,
Cp = an — tby _ _/ u(t) (cos(nwot) — isin(nwot)) dt = ?/ u(t)e” "ot dt
0
b 1T ,
Cp = M = —/ (cos(nwot) + i sin(nwot)) dt = T/ u(t)e™ ot dt
0

so that we can flnally write:

with

n=00
— § : Cnemwot

wg ], o

(7)

n=—oo

e [l

—znwotdt

Note thatc,, is complex and carries the phase and amplitude informafitimea:'” component of

the Fourier transform. This can easily be
Cn
dn,
P

shown knowing that

whered,, and¢,, are the phase and amplitudes of & component of the Fourier transform. Note
also that,, andc_,, are complex conjugate so thaft) is always real. The complex formulation can
also be written in the following form where the integrals taleen from—17"/2 to T'/2 instead of from

OtoT:

u(t)

€o

Cn

n=00
§ : Cneznwot

n=-—o00
T
1 Pl
7).
2
1 T
2
- ’LL —znwotdt
TJ-%



2.2.3 Examples of Fourier transforms of periodic signals

Amplitude of Fourier

Time signal coefficients
\/\Aj |
-T2 T/2 d,d,d,d,d;d,d,d;d,d,,
/\\/ |
TH 1o d,d,d,d,d;d,d,d,dyd,,
1 Main frequency
I band of signal
-T/2 T2 do dy dy di dy

Figure 15: Examples of Fourier transforms of periodic siginamplitudes of the Fourier components

FigurelIh shows three examples of periodic signals togeittikrtheir respective discrete Fourier
transforms. Only the amplitudek, of the Fourier components are represented. In the first tamex
ples, the function has only one and three Fourier compondiits third example is more complex.
All the values ofd,, are non-zero, but there is a specific frequency band in whiep &re very large.
Outside of this frequency band, the Fourier components eawmbsidered as negligible. This example
shows the interest of the transformation in the frequenceyalo using the discrete Fourier transform:

16



if one wishes to compute the response of a structure to ataérai signal of that type, it should be
performed only in the main frequency band where the exoitatignal has large Fourier components.

2.3 The continuous Fourier transform

When the function u(t) is not periodic, the discrete Foutransform cannot be applied. Instead,
the continuous Fourier transform should be used. It can bairea from the discrete transform
considering that the peridfl of the signal tends to infinity. In this case, the discreteuienciesiwg
used in the discrete transform tend to a continuous variabléhe frequency spacinw = wg tends

to dw (Figure[16):

limp_eowy = limp_eo Aw = dw

limp_oo My = w

Time signal Discrete Fourier transform

A |
®o

172 -T2

20, 30, 40, !
«—>
Ao=21/T
T->00 Ao —> do

Continuous Fourier transform

w

Figure 16: From the discrete Fourier transform to the caowtirs Fourier transform

Recalling the definition of,, (8), we compute:

z o)

imr— oo T'Cn = limir— oo /2T u(t)e” "m0t = / u(t)e “tdt = U(w)

-5 —00

U(w) is a continuous fonction of the variahleand is the continuous Fourier transformudgt). We

17



can now rewriteu(t):

n=0o00 n=oo T
u(t) = limT—mo Z Cnemwot :limT—wo Z Cnfemwot
n=—o0 e e
— WO inwnt 1 o0 ot
= lim c,T) —e™0t = — U(w)e™t dw
T_won;oo(n )27r 27r/_oo ()

which is the inverse continuous Fourier transform. Noté #malternative formulation consists in
writing the Fourier transform as a function pfinstead otv. In this case, we have:

w=27f = dw = 2ndf
U(f)= /00 u(t)e 2t qt

— 00

uy = [ vy
where one sees that the factg2 is not present anymore.

2.3.1 Examples of continuous Fourier transforms and propeies

Table1 and Figure 17 give a few examples of continuous Fouaesforms, while Tablg 2 gives some
properties of the continuous Fourier transforms. Thespaaties will be used in the demonstration
of Parseval’s theorem in sectibn 2.4.

u(t) U(f)
1 5(f)
00852(75) 5(f—f0)-1F5(f+fo)
HEQZSZ 5 — o) 8 + )
oo oo 21
S o -nT) | S ()

Table 1: Examples of continuous Fourier transforms

18



Time domain function| Frequency domain function Property

af(t)+bg(t) aF(f)+bG(f) Linearity
1 f . .
f(kt) mF (E) Time Scaling
%f (%) F(kf) Frequency scaling
f(t—to) e~ 2o p(f) Time shifting
f(t) et ot F(f - fo) Frequency shifting

f(t) real even function  F(f) real even function
f(t) real odd function| F(f)imag odd function

f(t) real F(=f)=F(f)

Table 2: Properties of the continuous Fourier transform

T f(t) $ F(o)

| =t " ®
]ﬁ: f(t) 4 F(o)
=t -f f, " o
$ (1) 1 F(w)
| g | " o

Figure 17: Examples of continuous Fourier transforms

In the following, we calculate the continuous Fourier tfans of a cosine function, of a 'box’

19



function and a triangular function. Consider the functign) = cos(2 fot). Its Fourier transform is
given by:

Ulf) = /00 cos(2m fot)e ¥ I qt

—00

1/, , .
— / - <ez27rf0t _I_eszﬂfot) 67127rft dt
2

1 1>
_ 1 / 2 fo)t gy 4 L / o-i2n(F ot gy
2/ . >/ .

= 300~ fo) + 3001 + o)

where we have used the definition of #ie) function :

o(x) :/ e 2k g
Consider now the box function represented in Fiduie 18 wisiclefined using the Heaviside step
function H (z):

H(t+a)-H(t-a) &
1

-a ! a
2a

Figure 18: Box function of widtl2a

1 —a<t<0

u(t):H(t—i—a)—H(t—a):{ 0 |t >a

The continuous Fourier transform is:

00 4 a 1 4 a
— —i27 ft — —i27 ft — —i27 ft
U(f) / u(t)e dt / e dt 2nf {e ] B

(ez’27rfa _ e*i277f“) B 2 sin(27rfa)
2im f B 2r f

Using the definition of thainc function:

sin(mzx)

sinc(x) =
T

we get
U(f) = 2asinc(2fa)

20



The sinc function is represented on Figuirel 19.

sinc(f)

A

/\V/\V/\\/\/ \/\\/\/\/\i f

Figure 19: Thesinc function

The effect of the widthu of the box is illustrated on Figufe R0: as the width is dividiyda factor
of 5, the value ofU/(0) is divided by 5 (/(0) corresponds to the integral aft), here the area of the
box), and the first lobe of theinc function goes to zero for a value of 5 instead of 1. In ordere® s
the effect of the width of the box for functions having the sdimnergy”, we consider now three box
functions of different widths, where the surface of the beedual in Figur€21. The term "energy”
is used here to refer to the case whefe) is an impulse input force of duratioA¢ and amplitude
F, of which the energy i$'At. For the same energy, we see that as the width of the box igesmal
and smaller (i.e. the impact of the force is of shorter dargtithe first lobe of theinc function is
wider and wider so that the continuous Fourier transfornaldeio a constant in the frequency band
considered in the graph. This illustrates the fact that ifeoto excite a wide band of frequencies with
high amplitudes, the duration of the impact force must béhagt &s possible.

() 4

u(t)=H(tra)-H(t-a) s ’ 2a=1

1

2a=0.2

/
- _ L S \4 \/ ‘1\/ ~ 5 ¢

Figure 20: Effect of the widtla of the box on the continuous Fourier transform
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H(t+a)-H(t-a) oo

2a=0.2

o e 7 \//\\/ 1\//\\/ 51

2a=1

Figure 21: Effect of the widtla of the box on the continuous Fourier transform for impulsecfions
having the same "energy”

We now consider a triangle functiar(¢) as represented in Figurel22:

_Ja—lt| —a<t<a
“(t)—{o 1] > a

and compute its continuous Fourier transform

U(f) = /00 u(t)e 2™ dt

—0o0

0 . a .
= / (a +t)e 2™t gt + / (a —t)e 2™t gt
0

—a

The first term of the sum is:

0 ‘ Fe—2mift 0 0 ,—2mift
/(a+t)eﬁ”ftdt - [w} —/ c dt

—a —2mif _ _g —2rmf
(a+t)6—2m‘ft 0 o—2imft 0
- [ —orif } L [4i27r2f2}a

and the second term gives

| @ tyemitg o [leZ O re
0 —2mif 0 4272 f2 |,

and finally the Fourier transform of the triangle function is

U(f) B 2) B 622‘71']”(1 B e—2i7rfa B _6—2i7rfa - ginfa N sinfa
o Am2f2? Am2f2 0 Am2f2 0 Ax2f? ¢ ¢
_ _6—227rfa (eZina - 1)2 _ _6_2Z7Tfa eZiﬂ'fa (eiwfa . e—iwfa>2
47T2f2 47r2f2
= I sin?(7 fa) ,
- W(22)2 (sm2(7rfa)) = o = a’sinc®(fa)

22
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2a

Figure 22: Triangle function of widtBa

The continuous Fourier transform of a triangle functionasmpared to the Fourier transform of a
box function in Figuré 23 for a width of = 0.5. The value ofU/ (0) for the triangle is 1/2 the value
for the box function (the area of the triangle is 1/2 the arffga®box), and the first lobe goes to zero
for a value of 2 for the triangle and 1 for the box function. Hue same duration of impact, one can
expect therefore that the triangle function excites a witkguency band than the box function.

u() 4

Rectangular a=0.5

Triangle a=0.5

Figure 23: Comparison df (f) for the triangle and the box function & 0.5)

2.4 The convolution integral and the theorem of Parseval

2.4.1 The convolution integral

The convolution integral of two time functions(t) and A(t) yields a new time functiony(t)
defined as:

y(t) = /00 x(T)h(t — T)dr

—0o0

y(t) = x(t) xh(t)

The following steps help understand how the convolutionaf tunctions yields a new function:

23



Take the two functiong(¢) andh(t) and replace t by the dummy variabte

Mirror the functionh(7) against the ordinate, this yieldg—7)

Shift the functioni(—7) with a quantityt

» Determine for each value ofthe product ofc(7) with h(t — 7)

Compute the integral of the produgft)

Lett vary from —oo (or a value small enough to make the product zere)}do (or a value oft
that is big enough)

Let us illustrate these different steps with an example. Wesicler the box function(t) which has
a unit value from¢ = 0 to ¢ = 1, and the box functiork(¢) which has a value of 1/2 fromh= 0 to
t = 1 (Figure[2%).

X h®

1

1/2

> >
1 t 1 t

Figure 24: Box functions:(t) andh(t)
We replace variablé by = and mirror theh(7) function (Figurd25b).
X(1) h(-7)
A A

1

1/2

1 T -1 T

Figure 25:z(7) andh(—7)
We then shift the functioh(—7) with a quantityt (Figure[26).

h(t-t)
A

1/2

—> t +—
Figure 26: h(t — )
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For each value of, we compute the product af(r) with h(t — 7) and compute the integral. The
resulting function is a triangle function as shown in FigRre

A Xx(1)
x(t) h(2t,-t)~

t-t) ~ o X(t)
g | | h(3t,-1)
T

h(5t,-1)

4,0 t, 2t 3t 4t 5t t=1/2
Figure 27: h(t — 1)
Due to the definition of the convolution integral, one carilgahow the following property:

y(t) = /00 x(T)h(t — T)dr = /OO x(t — 7)h(T)dr

—0o0 —0o0

Another interesting property is given by the convolutioadrem which states that :

Convolution in the time domain corresponds with a multiplication in the frequency domain:

y(t) = x(t) * h(t)
Y(f)=X(f)-H(f)

Proof;:

Y(f) = / T eIty — / h [ / h x(t—f)h(f)df} emi2ft gy

—00 —00 — 00

-/ o; h(r) [ / o; £t T)e_m’rftdt} ar

Make the change of variables;:=t — 7 = du = dt

Y (/) /_ Z h(r) [ /_ Z x(u)e_ﬂ”f(“J”)du} dr

= / h(T)e_i%deT {/ w(u)e_i%f“du]

= H(f)-X(f)

In the same way, one can prove that a convolution in the freggudomain corresponds to a multipli-
cation in the time domain:

Y(f) = X(f
y(t) = ().



2.4.2 The theorem of Parseval

The energy of a signal computed in the time domain is equal to the energy computed in the
frequency domain :
| wwde= [P
Proof:
/ h2 (t)dt — / |:/ H zZﬂftdf:| |:/ H 127rf tdf
= / / H(f /OO i2m(f+f) tatds' df
— / / H H f/) / 1 eiQﬂ'(f+2f,)t67i2ﬂ'(f,)tdtdf/df
The term -
/ L 2 (fH20 ) 2w (f')t gy

is the Fourier transform of
16i27r(f+2f/)t _ f(t) ei27r(f+2f’)t

if we take f(t)=1. Knowing that the Fourier transform ¢f(t)e?"/o! is equal toF(f — f0) (see
Table[2), and that the Fourier transformiaf 6( f) (Table[1), we have

| remrane e — (7~ (f +20)) =81 - )

1_ / / H(P).H()S(—f — f)df'df = / H(f).H(=)df

In addition, we know that h(t) is real so that we have (Table 2)

H(=f)=H(f)

/HH*df/ £)2af

The theorem of Parseval can also be written using the variabt 27 f:

| rwd= [ imre = - [ P

and

and finally
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3 Single degree of freedom system

The study of the single degree of freedom (dof) system isdbedation of structural dynamics. Such

a system is represented by a mass attached to the ground wejfiting. One may argue that such

a system is not of practical importance, as buildings arearlatge mass attached to the ground by
a spring. While this is true, we will see in the next chaptéet the theory of the single degree of

freedom system can be used to study the dynamic behavidrstfigdtures, once the concept of mode
shapes is understood (Section]5.1). There are also casehifdr the structure can be simplified to

the extent that it corresponds to a single dof system. Thiwisubject of the next section.

3.1 One degree of freedom systems in real life

The simplification of the model of a real structure to a onesystem requires to assume the existence
of a rigid body, whose motion due to an excitation source ia 8ingle direction. This body needs
to be attached to a motionless reference through a flexiblaexit whose dynamical behavior can be
neglected and acts like a spring. In practice, all the boaiben subjected to a force, tend to deform,
but one can consider that when this deformation is smallptiily can be considered as rigid. On the
contrary, if the body is deformed by the application of a &iitis considered as flexible (Figurel 28).
Note that the flexibility of the body will generally depend the direction of the applied force.

Rigid body Flexible body

41—

I

Figure 28: Rigid body / flexible body

This classification is however not as clear as it may appe&enthe force applied to the body is
dynamic, the deformation of the body depends also on theiémey at which it is excited. In order
to illustrate this, let us consider the example of a one dboiiiding. In the first case, the building is
excited by a ground motion due to an earthquake. The exaitftequency of the earthquake is rather
low (typically below 20 Hz), and the floor is quite rigid whexc#ed laterally. On the other hand, the
columns, when excited at their tip, are very flexible. In ttése, the floor can be regarded as a rigid
body, and the columns act as a spring element attachingriferaass of the floor to a fixed reference
(the ground, Figure29)
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Rigid floor

Ground motion

{ ™ ?d floor
i" % Flexible columns K
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\\| \\| Ground motion \

<> <>

Flexible columns

Figure 29: One story Building excited by an earthquake

In the second case, if the building is excited by a rotatinghiree (such as a power generator)
which is in the middle of the floor (Figufe B0) , the frequendyercitation is much higher and can

reach several hundreds of Hertz. The excitation of theingtahachine acts both in the vertical and
in the horizontal direction. The horizontal direction @sponds to the case previously studied. For
the vertical direction however, the columns have a muchédrigtiffness in that direction, and can be
considered as rigid supports of the floor which is now excitedending, a direction in which it is
much more flexible. The system can therefore be modeled bgra bea its supports which is excited

in the middle by a vertical force. In such a case, it is notightforward to simplify the system to a
one dof system (we will see however in sec{ion 6 how this catdpe).

Flexible floor

Q Rotating machine
N\ V%
R

Rigid columns

Rotating machine

Flexible floor Rigid columns

Figure 30: One story building excited by a rotating machine

The first example shows how a real-life system can, in somescdse simplified to a one dof
system. In the second example, such a simplification is netraightforward. Note also that elements
which are considered flexible in the first case, are congidegid in the second case, and vice versa,

the only difference being the direction of the excitation.
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Figure[31 represents a series of systems which can be maslighean equivalent one dof system.
Rigid floor

N\

X Rigid floor
| Flexible columns k /
\ \\/ e PN m
\ \
\ \ Ground motion \
\ \ .
pare < Flexible columns
Ground motion
Rigid stator + rotor
Rigid stator ~a
Rigid rotor
I ) m I (unbalanced)
Rigid rotor ) Flexible mounts =S, k
(unbalanced) le— Flexible mounts
Rigid car
Rigid car -
Flexible suspensions
(O] m] |
> _ _ k
Flexible suspensions —» Road
irregularities
o iRoad irregularities rreguiart
Rigid wheels
Rigid structure
Rigid structure
/\ =

K N
—

f(t)
}-/\/\r mpr—
Flexible foundations f

Flexible foundations

Waves excitation

Disk

Shaft

Disk
is -

m|]
Shaft —>§ Kk
Engine

vibrations
Figure 31: Examples of equivalent one dof systems
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3.2 Response of a single degree of freedom system without daimg

Let us consider a mass-spring system without damping, septed in Figuré_32. The first law of
Newton applied to this system gives:

mi =Y F, (8)

where) " F, is the sum of forces action on massin directionz:

e Spring force: —kx , wherek is the stiffness of the spring. Note that the position= 0
corresponds to the static equilibrium of the hanging masslagd to the spring. As the equation
of motion is written with respect to this reference posititime force of gravity must not be
considered in the equilibrium of forces: it is in equilibmuwith the spring forcecAl in the
static equilibrium position (Fiugile_83)

« External forcef acting on the mass. It is the force which causes the mass te,rtas called
the "excitation force”.

Putting all the terms dependent oron the left hand side, we get the equation of motion of the 1 dof
system:

mi+kr=f 9)

Figure 33: Definition of the reference positien= 0 of the mass for the mass-spring system
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3.2.1 General solution of the equation of motion
The characteristics equation of (9) is obtained assumirgA e which leads to:
mr? 4+ k=0 (10)
The roots of this equation are purely imaginary:
r=+ik/m
The general solution can therefore be written in the form of :
r = Acoswyt + Bsinwyt

where

wn =V k/m
is the natural angular frequency. In the absence of extexwdation force, the motion is oscillatory
with a frequencyf = %\/k/m which is defined by the values of k and m.The motion is inizidi

by imposing initial conditions on the displacememntand on the velocityi,. In this case, the motion
is given by:

Ty .
x(t) = xo coswpt + — sinwy,t
Wn

Figure[34 illustrates the vibration of a one dof system toohtan initial displacement, with a zero
initial velocity #y are imposed.

K

X- mXOX0 /\/\ |
VAVAYA

Figure 34: Free vibration of a 1 dof system to which an initiisblacement is imposed

—

The solution can also be written in the general form of a @siith amplitudez and a phase:
z(t) = acos (wpt + @)
where we have:

To = aCcoS @

Zo/wn, = asin ¢

which leads to: )
T

tan ¢ = oo
n

The phase is a function of bothry andx. It is equal to zero whem; = 0 and equal t®0° when
o = 0.
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3.2.2 Particular solution

Consider the continuous inverse Fourier transform of theit@ion forcef (¢):

f(t) ! /OO F(w)e “tdw

=5 »
and isolate a single component at frequetcy
F(w)e ™! = F(w) cos(wt) + iF(w) sin(wt)
Let us first consider an excitation of the fof{w) cos(wt). The equilibrium equation is written:
mi + kx = F coswt (1))
and the particular solution can be written in the generahfor
x(t) = Acoswt + Bsinwt = acos(wt + @)
If we now consider an excitation of the forfi(w) sin(wt), the form of the general solution is
x(t) = asin(wt + ¢)
Therefore the general solution to an excitatiow)e™* is
2(t) = acos(wt + ¢) + i sin(wt + @) = ae' @) = Xt

whereX = ae'® is a complex number carrying the information of both the phasd the amplitude
of the response at frequeney(Figure[35)

Imag 4

X | a

¢

X Real

Figure 35: Representation of the complex amplitid@ the complex plane
Replacingr(t) = X et andf(t) = F et in (@), we get

(k—me) Xe’iwt — Feiwt

which can be solved fok: ”
T k—w?m
Let us defineX, the amplitude of the static displacement of the mass-(0) :

X

Xo=F/k
The solution can then be expressed as:

X 1
Xo 1-w?/u? (12
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where we have used the fact that = \/k/m is the natural angular frequency of the system. For
an undamped system, the value Xf X, is always real. It is positive whea < w,. This means
that when the excitation frequency is lower than the natargjular frequency of the system, the
displacementX is in phase with the excitation force (= 0°). When the excitation frequency is
equal to the natural angular frequency of the system, thditag tends to infinity. In practice, the
displacement can never reach infinity as there is always # amaunt of dissipation which is not
considered here. When the excitation frequency is highen the natural angular frequency of the
system, the displacement is in opposition of phase withereidp the excitationd = 180°): the mass
will have an upward motion when the force applied is downwaithe value ofX/ X, as a function

of the excitation frequency is plotted in Figlird 36. Suchat @ called a Bode diagram.

4=0°

‘ | »
, 10° ¢ 4
x(t)/x, ;\/ )

f(t)

Figure 36: Amplitude ofX/ X, as a function of the excitation frequency (Bode diagram)

Note that in structural dynamics, it is usual to represeatBlode diagram containing both the
amplitude and the phase with a linear frequency axis andaitbgnic scale for the amplitudes, while
in the domain of control and automatics, a logarithmic scaleften used for the frequencies, and a
scale in decibels (dB) (also logarithmic) is used for the ktonghes. When using a log-log scale, the
Bode diagram of a second order system such as a mass-spsiegnsiyas a slope of -40 dB/decade
after resonance (Figukel37)

If one wishes to compute the responsgg) in the time domain, it can be done using the inverse
continuous Fourier transform given by:

1 [ ,
z(t) = %/ X (w)e “tdw

where
F(w)

) = = om
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Figure 37: Bode diagram of a mass-spring system using ailbgac scale for both the frequencies
and the amplitudes

The Bode diagram is a very useful tool. It allows to clearlynpout the resonance of dynamic
systems. In the case of a 1 dof system, one sees clearly éhaetfuencies close to the resonant fre-
quency are strongly amplified while the frequencies awawpftioe resonant frequency are diminished.
The 1 dof system can therefore be seen as a mechanical filter.

Input signal Output signal

0.4
X

:: : z

. m|

\[ fx /W\/\WW
o f

10°
3 2 El 1 2 3
o

. [
Time(s) Time(s

X1

Resonance

20 30
Freq (rad/s)

10 20 30 40 50
Freq (rad/s)

Figure 38: lllustration of the resonance : the one dof systetmas a mechanical filter which enhances
the frequency components close to the natural frequendyeayistem

This is illustrated in Figure_38 where we consider a peri@dicitation forcef (¢) whose discrete
Fourier transform is computed, showing the relative amgés of the different components. The
discrete Fourier transform is then applied to the outg} of the system. One sees clearly that the
relative amplitudes of the different components have chdnthe amplitudes close to resonance are
much higher than the other components. Resonance can béouseldice very large displacements
in a system. The entertaining exercise of breaking a wingsghath the voice is one example: if one
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emits a sounds whose frequency is close to one of the naterpldncies of the glass, the effect can
be strong enough to break it. The reader can see a demamstirathe following videos:

http://ww. yout ube. con’ wat ch?v=101 WhHy NOCk
htt p://ww. yout ube. com’ wat ch?v=Ji M6At NLXX4

3.3 Response of a single degree of freedom system with damgin

Equation[[9) represents a conservative system in whicle isean exchange between the kinetic and
potential energy without dissipation of energy. In realibere is always a certain amount of energy
dissipated somewhere in the system, which is responsibkedertain amount of damping. For mass-
spring systems, the most common form of damping adopteckisiitous damping, represented by
a dashpot element. In the equation of motion, an additiomalefdue to the dashpot is added in the
following form:

Fy, = —bi

The equation of motion is given by (Figurel 39) :
mi + bi + kx = f (13)

In order to simplify the notations, equatidn{13) can be im by dividing it bym and introducing
the damping coefficierg = b/(2v km):

&+ 2wnd + wie = f/m (14)

f

Figure 39: Forces acting on a one dof mass-spring-dashptaray

3.3.1 General solution of the equation of motion

The characteristics equation is given by:
r? 4+ 26w, + w,% =0
In most structures, the damping coefficiéris smaller than one. In this case, the roots of the charac-

teristics equations are given by:
r = —&w, £ iwp\/1 — &2

or
r = —fw, £ iwg
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with
wg = wpy/1— &2

The general solution can be written in the form of:

z(t) = e 8t (A coswgt + Bsinwgt)
In the absence of external forces, the system will vibragetdunitial conditions on the displacement
x and the velocity’y. The free vibration is given by:

x(t) = e twnt (xo cos wyt + %@mfmo sin wdt) (15)
d

The system will oscillate at a frequeney; which is different from the natural frequency,, and the
motion will decrease with time due to the exponential terrf’»* which is a function of the damping
coefficient and the natural frequency of the system The free response is represented for different

values of¢ in Figure[40.
=0 £=0.01

A
0 20 40 60 80 100 120 140 "o 20 40 60 80 100 120 140

' £=0.05 1 £=0.1

'10 20 20 60 80 100 120 140 0 20 40 60 t 80 100 120 140

Figure 40: Free vibration of a one dof mass-spring-dashygiem due to an initial unit displacement
xo = 1 as a function of the damping coefficiept

When ¢ = 0, the mass oscillates with a constant amplitude. As the dagnisicreases, the
amplitude decreases faster with time. For a valu¢ ef 0.01, the amplitude is divided by 2 after
about 10 oscillations. On Figutel41, we represent the numhefroscillations needed to decrease
the amplitude by one half as a functionQfin a log-log scale. The figure shows clearly that as the
damping coefficient is divided by 10, 10 times more oscitlasi are needed to reduce the amplitude by
one half. The time needed for the motion of the mass to be egbliog one half is a function gf and
the natural frequency,,: the higherw,,, the shorter this time will be. For a system with a low natural
frequency and a low level of damping, a very long time will lzeeded to attenuate the vibration.
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10
10° ¢ 10° 10

Figure 41. Numben of oscillations needed to reduce the vibration amplitudersy half as a function
of the damping coefficierg

When the damping coefficient is very high ¢ 1), the solution of the equation of motion is:

Zo + wpéxg

z(t) = e~Swnt (xo cosh ut + sinh ,ut)

with

p=wn\/E? —1
This solution is not oscillatory. The higher the damping;, stower the response decreases because of
thecosh andsinh terms which grow with time. For a limit value §f= oo, the mass is blocked by the
damper in the initial positiona((t) = x¢, Figure[42). The valu¢ = 1 represents the limit between
the oscillatory motion and the non-oscillatory motion. §kalue is called the critical damping. The
roots of the characteristics equation are double and giyen b

= —Wwn

The solution is given by:
2(t) = e (20 + wno) t + o)

It is represented on Figutel42. Note that the critical dagpgiorresponds to the value of damping for
which the motion of the mass is the fastest to reach a zerevalu

=100

1

0.8
0.6 §:2

0.4r E_,=1
0.2

X(t) o

ol 2 4 6 \/10 t(s)
04
06

£=0.1

-0.8

Figure 42: Response of a one dof mass-spring-dashpot sys@minitial unit displacement:( = 1)
for high values of damping coefficienfs
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3.3.2 The impulse response

An impulse excitation is defined as a force of amplitddapplied during a short timat¢. The energy
of the impulse is given by~ At (Figure[43). Let us consider the equation of motion (13) withal
conditionszy = 0 andzy = 0 and integrate it fromt = 0 to ¢t = At

At At
mxglar = FAL — / kxdt — / bxdt
0 0

As the initial conditions arey = 0 andxy; = 0 and the time interval\t is very short, the last two
terms tend to zero, we get:
. FAt
Tolar = ——
m

which shows that in order to compute the response of a systeamimpulsef’At, one has to compute
the response to an imposed velociy\t/m at timet = At. The impulse response of the system is
defined as the response to a unit valué'dft. Using [15%), the impulse response is given by:

e—{wnt
x(t) = sin(wgt) (16)
mwq
F I Impulse=FAt
AUt

Figure 43: Definition of an impulse excitation

3.3.3 Particular solution of the equation of motion

In a similar way to what was done for the undamped system, wenasf (t) = Fe™! andz(t) =
Xe™t and replace if(14) to get:

(W2 + 2ifww, — w?)X = F/m

The complex amplitud&X is given by:

F 1 F 1 1
X =— 2 : 2 = w? ce W :XO w? ce W
m \wy, + 2ifwwy — w k\1- % 42ic — Y 4212

The real and imaginary parts &f are given by:
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(—‘”—2> (%)

w

X; = X, Sion S
(1- 57%) +(22)

and the amplitude and phaseXf X, are given by:

1
’X/X0’ - N 2 2
(1-2) + (22)
—26

tan¢ =

The Bode diagram (amplitude and phaseXofX| is represented in Figute44 for different values of
£.

|X7X,|

-50

¢(°)-1oo

-150

-200
0

Figure 44: Bode diagram for the one dof mass-spring-daskygstem. Influence of the damping
coefficient¢

The influence of is as follows: ag is increased, the amplitude of the peak is reduced and the

phase transition from° to 180° around the resonance is smoother. At the resonant frequhrecy
phase is always equal #9°. The frequency at which the amplitude is maximum is slighifferent

from w,, andwy:
w/wp = /1 —2€2
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The maximum amplitude is given by

1

261 -¢

| X/ Xo| =

For small values of, we have however:

w/w, =1

1
X/ Xyl ==
X/ X0l = 5
Up to now we have represented the displacemétit= X ¢! in the Bode diagram. The velocity
2
v(t) = d(gt(t) = iwX, and the acceleration(t) = % = —w?X are represented and compared to
the displacement in Figute45. Note the change of slope &eafiod after the resonance frequency due
to the multiplication by a factoiww and—w? respectively.

10t ) Acceleration
Velocity

Amplitude 10 ¢

Displacement

olw,

Figure 45: Bode diagram for the one dof mass-spring-dastystem: displacemer, velocity jw X
and acceleration-w? X

An alternative way to represent the respoiis€X, as a function of the frequency is the Nyquist
diagram in which the real and imaginary parts are plottedhindomplex plane (Figuie ¥6). For a 1
dof system, the Nyquist plot is close to a circle with a dieenet1/2¢. The Nyquist plot makes a
zoom around the natural frequency of the system: frequsraase to the natural frequency spread
along the circle in the Nyquist plot.
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Figure 46: Nyquist plot for the one dof mass-spring-dasisystem for different values of dampiidg

3.3.4 Duhamel’sintegral

Consider a 1 dof system excited by an arbitrary fof¢e) (Figure[4T). f(¢) is decomposed into a
series of short impulses at time The contribution of one impulsg(7)dr to the response of the
system is given by :

f(r)drh(t —T)

whereh(t) is the impulse response. The total contribution is theeefor
t
x(t) = / St — 7)dr
0
knowing thatf(¢) = 0 andh(t) = 0 for ¢t > 0 we have:

x(t) = /00 f(r)h(t — T)dT = f(t) * h(t)

/

4 N
< »

T

v

dT t

Figure 47: Decomposition of(¢) in a series of short pulses at times
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In the particular case wher{t) = Fe“!, we have:
z(t) = Xet = / Fe"th(t — 7)dr = / Fe(t=7) (r)dr
— ezwt/ h( ) —szdT _ Fezth( )

which can be rewritten:

showing that the continuous Fourier transform of the impuésponsé (¢) is the ratioX'/F which is
the transfer function of the one dof system.

3.3.5 Base excitation

In some cases, the excitation is not in the form of an appbeceff (¢). An example is the excitation
of an earthquake which imposes a displacement of the badeedfuildings. Let us consider the
mass-spring-dashpot system to which a base displaceryéntis imposed (Figurg48).

=) SRS S X
K L|_I b k(X-X,) * Lr'* b(X-X,)

m m

AP il B XA

Figure 48: Forces acting on a 1 dof system excited by the base

The equilibrium of forces is written
mi = —k(x — xo) + b( — )

the equation can be rewritten as a function of the relatigpldcement of massa with respect to the
baser, = v — xg:

ma, + bx, + kx, = —miy an

This equation corresponds to the equation of motion of a afiendss-spring-system where the
displacement is the relative displacementand the excitationf(t) = —ma is a function of the
imposed acceleration at the base and the masghe response can therefore be computed using the
tools described in the previous sections.

3.4 Reduction to a one dof system

With some assumptions, the systems represented in Higlcar8hbe reduced to a single dof mass-
spring system. If one wishes to take into account the diisimaa dashpot must be added. There are
thus three parameters which need to be known when repnegemntieal structure with an equivalent
single dof mass-spring-dashpot system:
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* The equivalent stiffnesk
¢ The equivalent mass

* The equivalent viscous damping coefficiént

One should always keep in mind that the equivalent singlesgstem is a simplification of the reality,
and that it is valid only in a certain frequency range. Thif e discussed in more details in sec-
tion[3.4.4. With the help of simple examples, we illustrdte methodology to compute the equivalent
stiffness, mass and damping parameters of a system.

3.4.1 Equivalent stiffness

The most general method to compute the equivalent stiffoé#ise flexible element of the system
consists in applying a force of amplitudé in the direction of motion, and computing the resulting
displacement: in the same direction. The equivalent stiffness is givert by F'/z (Figure[49).

Flexible
body

Direction
of motion

Figure 49: Principle to compute the equivalent stiffnessd a flexible bodyS

In the following, this methodology is applied to simple flebd bodies, for which analytical solu-
tions can be computed.

Bar in traction
For a bar in traction (Figufe 50), the constitutive equattogiven by:

du

N=FA—

dx
whereFE is the Young’s modulus, A the area of the section afd) the axial displacement (in direc-
tion z). For a bar in pure traction, the normal fordeis constant and equal 6 so that the general
form of u(z) is

F
u(z) = 4% + Cst

The bar is fixed (u(x)=0) at = 0, so that we have :

F
u(x) = A’

The displacement at the free tip of the bar is equal to

F
=—1L
d EA
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and the equivalent stiffness is given by:

L Ll
X¢ EA
L| ||« E—
k=F/d
m m

i

Figure 50: Reduction of a bar in traction of length Young’s modulus E and section ardato an
equivalent spring:

Bar in torsion

For a bar in torsion, the direction of motion is a rotationttsat the force to be applied needs to be a
momentC. The equivalent stiffness is computed through the calcraif the rotation angle at the
position where the moment is applied (Figliré 51). The canste equation is given by:

de
M, =GJ]—
v dx
whereG = 2(1—’3”) is the shear modulus anfis the polar inertia.{ = 7R*/2 for a circular section
of radiusR). For a bar in pure torsion, the torsional mome#t is constant and equal to the applied
momentC', so that the general form é{z) is:

O(x) = gm + Cst

- GJ
The bar is fixed at = 0 so thatC'st = 0 and we finally have:
C
The rotation at the tip of the bar is
CL
O(L) = —
(L) =&7
so that the equivalent stiffness is equal to
GJ
k=7

Note that while the motion is a rotation and the force is a marieis usual to represent it with an
equivalent system in translation, as this is much easien ficvisual point of view.
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Figure 51: Reduction of a bar in torsion of lendiland torsional stiffnes&’.J to an equivalent spring
K

Beam in bending

For beams in bending, we can follow the same approach as éhdatailed for the bar in traction and
in torsion. In most cases however, it is more convenient écsofutions directly available in tables. As
an example, we consider a cantilever beam in bending (FigBireFrom the tables, we can directly
get the displacement(z) as a function oft:

y(z) = @BL — )
and deduce the tip displacement
(L) —d— FL?
Y 3BT
The equivalent stifness is therfore
3ET
b=
X LLLLLLL L
¢ El k
L| || m
m

Figure 52: Reduction of a beam in bending of lengtland bending stiffnes&'/ to an equivalent
springk

Let us take a second example of a portal frame representadunef53. The direction of motion
is supposed to be horizontal. Due to the symmetry of the tstreicthe problem can be studied by
considering only one half of the structure. The force appirethe direction of motion is thug'/2.
Note that the boundary conditions of the beam in bending diereht from the previous example,
because the rotation at the tip is zero due to fixation to thid fioor. For these boundary conditions,

the displacement is given by:
F

v(@) = 557

(3L — 2x)

The tip displacement is
FL3

d=y(L) =557
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which gives us the value of the equivalent stiffness

24E1
T

If we neglect the weight of the columns, the natural freqyesfdhe equivalent one dof system is

1 24FE1
S LT
f 27 L3Mfloor( Z)

d
F >
- Mﬂoor F—/2>mmg
El, p El
7777 7777 7

Figure 53: Reduction of a portal frame to an equivalent nsgsig system

An alternative method can be used to compute the equivaiéness. It is based on the equality
of the strain energy of the real structure and the one dof 1sia1$8g system which is given by
ka? B F?

Ey=—=" 1
s =5 = g (18)

The principle consists in computing the strain energy of réed system and then identifying the
equivalent stiffness by expressing the equality wWitH (1&t us consider the first three examples:

» For a bar in traction, the strain energy is

1 [F N2
E,=-| —d
*=2), BAY

and the normal forcéV is constant and equal # leading to
_ 1L F? L BA
T 2EA 2 L

e For a bar in torsion, the strain energy is

1 [ M2
s = = —Ldx
2 )y GJ

and the torsional momemt,, is constant and equal 1@ leading to
1%L C? GJ
E = —-— = K = —
*T2G] 3K L
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e For a beam in bending the strain energy is

1 [ v
Bo=- [ “—d
s 2/0 Br ™

and for the cantilever beam we haVé(x) = — Fx so that

1P 3EI

= :> —_
* 92FEI 3 L3

This method is fairly simple to apply and gives the same tesag the general methodology
presented above. Note that when the flexible body cannotdoesented by a simple bar in traction or
torsion, or a beam, the general methodology can still badeghplin order to compute the displacement
d due to a force” applied in the direction of motion, an effective approactoidiscretize the flexible
body using the finite element method. The valuelafomputed allows to compute the equivalent
stiffnessk = F'/d.

3.4.2 Equivalent mass

The computation of the equivalent mass allows to replacfidkible body by a massless spring. This
approach is valid when the mass of the flexible body is smafigared to the moving mass. When
such is not the case, it is possible to take into account thes mofthe flexible body using an energy
approach, in a manner analogous to what was done for theatepiivstiffness using the strain energy.
The idea is to express the equality of the kinetic energy dddditional mass attached to the spring
with the kinetic energy of the flexible body. This is illudtd with the following examples.

Equivalent mass of a spring

Consider a mass-spring system represented in Figure 58e Wnass of the spring is not small
with respect tan, it can be modeled by an additional mass. In order to do that, we express the
kinetic energy of this additional mass:

1 2

Ek = §max'

We now compute the kinetic energy of the spring. We assunteathen the spring is deformed, the
displacement along the spring is linear:

(19)

whereu(L) is the velocity at the tip of the spring and is equaktm equation[(IP). The total kinetic
energy of the spring is

1 [ ) 1 boa? 1 L,
Eys = 5/0 pv(x)” de = 5/0 Pzl (L) = o3 (L)
lmS.Q lmS'Q 1 )
g _— L [ — — —
53 (L) =573 = 5mat
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wheremy is the mass of the spring(; = pL). The additional mass due to the springris = m/3.

<24
Xy
LS km, ——» k
m m

m

a

Figure 54: Equivalent 1D model of a mass-spring system ¢pkito account the additional mass due
to the spring

Bar in traction

The second example is a mass hanging from a bar. We haveyataladlated the equivalent stiffness
of the bar in tractiork = EA/L. When the mass of the bar is not small compared to the mags
equivalent additional mass,, needs to be computed. Again, we assume that the displacésnant
the form

u(z) = u(L)%
the velocity is .
v(z) = u(L)Z

whereu (L) is the velocity at the tip of the bar and is equalitin equation[(IP). Following the same
calculations as for the spring, the additional massis equal tom;/3 wherem,, is the mass of the
bar.

NANNANNN SANNANNN
X X
k=EA/L
EA p L — > EA p L >
ma
m
m d

Figure 55: Equivalent mass-spring model of a mass hangong & bar taking into account the addi-
tional mass due to the bar

3.4.3 Equivalent damping

In real structures, damping is a complex phenomenon whistesanainly from two types of sources:
external and internal (FiguEe1s6).
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Damping

Internal External
Material  Connections Non-structural elements,
(joints, bearings) energy radition in soil

Figure 56: Sources of damping in real structures

When dissipation is present, the stress is not in phase kétkttain, which results in a hysteresis
loop if one plots the stress as a function of the strain (FEg#).

g

Figure 57: When the stress is not in phase with the strait),(lbfs results in a hysteresis loop in the
stress-strain plane (right)

The mechanical energy dissipated in one cycle per unit veldfp is given by the area inside the

loop :
T
WD:/ Uédt:/ade
0

whereT’ is the period of one cycle. The damping factoof a material is proportional to the ratio of
energy dissipated in one cycle to the maximum strain patkatiergy:
Y=ot D
2 Epot

whereE,,,; is the maximum strain energy. The damping factor of a stredtugiven by

vs= [ wav = 5528

27 EpotS

It is equal to the damping factor of the material if the stawetis homogeneous. The methodology to
compute an equivalent viscous damping coefficient consistspressing the equality afg for the
structure studied, with the value ¢f for a one dof mass-spring-dashpot system.
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Computation of ¢ for a single dof mass-spring dashpot system

Let us consider the mass-spring-dashpot system représienfégure[58 and compute the dissi-
pated energy in one cycle:

T
WDS:/ bz xdt
0

with z(t) = | X |cos(wt) we have

T T
1 — cos(2wt
/wWX%m%mﬁ:/u%wH—ﬁﬂiﬁﬁ
0 0

W
DS 5

T
= w2b|X|2§ = whw| X |?

Figure 58: One dof mass-spring-dasphot system
The maximum potential energy is given by

1 1
EpOtS = §k$2 = 5]’€|X|2

and the damping factor of the mass-spring-dashpot systgivdn by:

1 WpS 27 bw|X|?

21 Epots 21 k| X |2

wb

k

Note that the damping factor the mass-spring-dashpotraystenputed at the natural frequency=

VEk/mis:

Uy =

kb b
Vs(wn) = mk = \/ﬁ =2

showing the link with the damping coefficiedefined earlier.

Examples of computation of an equivalent damping

Let us consider a few examples of computation of an equival@ampingb.

 In the general case whets; is a known function ofv, we have:

bw) = 5

w
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Note that this model introduces a dependency with respect to the frequency. The major
drawback is that it cannot be used for time domain computatiguch as when using the
Duhamel’s integral). A good approximation can be obtaingdding a viscous damping where
b is a constant by equatingg at the natural frequency of the system (Fidurk 59).

¥

b

Actual damping

1

»
»

2
olo

n

Figure 59: Determination of the value of an equivalent viscdamper

D () = b= thg(wn)Vem

Vkm

For moderate values of damping, this will lead to a good sgmation of the damping because
the frequency response of a one dof system is affected byaimpidg only in a narrow fre-

guency band around the
model of damping only in

resonance (Fifuie 44). Therefdsenécessary to have an accurate
the frequencies close to the redoinaguency.

» For some structures, thgsteretic damping model is often adoptegwhich consists in assum-
ing 15 as constant. In this case, we have (Fidure 60):

wb

k

_ Ms

w

Vs = b(w)

Note again that this model introduces a dependenéwith respect to the frequency.

Figure 60:

b

2

»
»

olo

n

value of) g for the hysteretic damping model

 In Coulomb friction damping, the damping force is propamgl to the weight of the mass and

its sign is opposite to the
with Coulomb friction is:

wheresgn(z) = 1 for z >

sign of the velocity. The equatibmotion for a single dof system

md + Fesgn(z) + kx = f

0andsgn(z) = —1lorx <0
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K f(t)
|"\/\f mr—
T

Coulomb friction

Figure 61: One dof system with Coulomb friction
Figure[62 (left) shows an example oft), &(¢) and F.sgn(z). The energy dissipated in one
cycle is given by:
T
Wp :/ F.sgn(z) zdt = /chgn(a'v) dz
0

which can be computed easily by plotting the coulomb frictiorce as a function of the dis-
placement of the mass (Figurel 62, right).

X(t)
/ x(t)
/
FC
. -IX| X x
t
T \ : T ’

Figure 62: Example of displacement, velocity and frictioncé for a one dof system with Coulomb
friction

T/4 | X]
Wps = 4/ Foadt = / 4F.dx
0 0

The damping factor of the system is thus

1 4F,|X]| r,
s = — 1 =4
2m Sk|X|? k| X]|

and the value of the equivalent damping

Fe
Tw| X|

b(w, |X]) =4

The equivalent damping is a function of both the frequenay the amplitude of the displace-
ment of the mass.
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Measurement of damping in one dof systems

Typical values of damping for materials used in civil enginieg structures are given in Taljle 3.
Because the damping in structures comes from the matenislal®o from the connections, it is
very difficult to predict the damping coefficient of a struetu Because of that, it is often necessary
to measure the damping coefficient after the structure has beilt in order to make sure that the
structure is safe. There are two fast and simple technigqueseasure this damping coefficient.

Material £

Reinforced concrete 0.004-0.012
Composite 0.002-0.003
Steel 0.001-0.002

Table 3: Typical values of damping in civil engineering strures

The first technique is called thegarithmic decrement method It is based on the measurement
of the impulse response of the structure. When a structunecised by an impulse force, the response
contains mainly its first mode. This is because the form ofitiygulse response is a sine function
with an exponentially decaying enveloppe where the coefiicof the exponential is-w,t. The
higher modes decrease therefore faster and their condribid the response is negligible after a few
oscillations. A typical impulse response containing orig first mode of vibration (single dof) is
represented in Figufe b3.

A

| m periods
Xn H<—> ........................................

Figure 63: Impulse response containing the first mode (sidgf)

The general form of the response at tifris:
z(t) = et (Acos(wgt) + Bsin(wqt))

The responsen periods after time is:

z(t+mT) = e &ntmD) (Acos(wy(t +mT)) + Bsin(wg(t + mT)))
o(t+mT) = e ) (Acos(wgt) + Bsin(wgt))
and we have
x(t) _ e~Sont Ewn (mT)

o(t+mT)  e€wnltHmT)
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we define the logarithmic decrement

_ x(t)
A=lIn (x(t—l—mT)

27 1
) = &w,(mT) = fmw—dwn = 2m7r§17_§2

For small values of we havet? << 1 which gives:

The damping coefficient is given by:

A ~2mmn¢€
1
=—A
¢ 2mm

The second technique is called the half-power bandwidtis based on the frequency response
of the system (Figurie_64). It consists in identifying the imaxm amplitudeA at resonance, followed
by the two points at the left and right of the resonance whieeeamplitude is4/2 (half power).
The frequencies$2; and 2, correspond to these two points, and it can be shown that timpidg
coefficient can be approximated by:

5:92—91

The approximation is valid for values 6f< 0.1.

IX/X0| A

A

A2

0 0.5 1 1.5 2

Half-power
bandwidth

Figure 64: Frequency response of a structure focusing omaule: the half-power bandwidth method
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3.4.4 Reduction to a single dof system : limitations

NANNANNN NANNANNY
« A X A
k=EA/L
EA, p L e EA, p L }
ma
v Y m
[m] L T
F F F

Figure 65: Mass hanging from a bar and equivalent repres@mtaith a single dof system with an
equivalent stiffness and an additional mass

Let us consider the structure in Figurel 65 which consists lb&rato which a mass is hanging.
We have already discussed the reduction of such a systemirngla dof system with an equivalent
stiffnessk = EA/L, and an additional mass,=m;/3 wherem, is the mass of the bar. The mass is
100kg and the bar is made of steél (= 210G Pa, p = 7800kg/m?) and has a length = 1m and a
square section dfem x 2cm.

The frequency response functioh(w)/F is plotted in Figuré¢_ 86 where the exact solution (con-
sidering the bar as a continuous system, see sddtion 6)hardjtiivalent single dof system (with and
without the additional mass of the bar) are compared. Bel6@DZHz, all three models are in very
good agreement. Around the natural frequency, there ightglifference in the resonant frequency:
the model taking into account the additional mass matchéstive exact solution, while the model
neglecting the additional mass has a resonant frequergtytlglhigher, but the difference is less than
1%. Above 2500 Hz, the exact solution contains an additipealk. This peak is due to the first
resonant frequency of the bar which is coupled with the masss additional resonant frequency
cannot be represented by a single dof system.

b b
10* 10*
model 2 Y model 1
Exact?‘A
107 : ‘ ‘ ‘ : —p 107 ‘ ‘ ‘ : —»
0 500 1000 1500 2000 2500 3000 140 142 144 146 148 150
Frequency(Hz) Frequency(Hz)

Figure 66: Frequency response function of the mass hanging & bar excited by a vertical force.
Exact response and approximation using a single dof systétm #nd without additional mass)
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The next graphs in Figute 67 are plotted using a valye 1 times higher (i.ep = 78000kg) for
the bar. While this value is not representative of a real naf¢he purpose is to illustrate the fact that
in such a case, the mass of the bar cannot be neglected anyWwmeee indeed that if the mass of the
bar is neglected, a significant difference is found for th&t fiatural frequency. Another difference is
that the equivalent single dof model is only valid below 500dde to the appearance of several peaks
above this value. These peaks are due to several resongquéfiees of the continuous bar coupled
to the mass. Such additional peaks can again not be repeddeye single dof system.

In summary, the examples shown above illustrate the fatthleasingle dof equivalent system is
only valid in a certain frequency band which depends on dyogamoperties of the bodies which are
replaced by an equivalent mass and spring.

z z

o model 1 5
| model 2 ]

model 2 model 1

Exact \\“

0 500 1000 1500 2000 2500 3000 50 100 150 200

Frequency(Hz) Frequency(Hz)

Figure 67: Frequency response function of the mass hanging & heavy bar excited by a vertical
force. Exact response and approximation using a singleydtéis (with and without additional mass)

3.5 One DOF application: the accelerometer

By far the most common sensor for measuring vibrations isatwelerometer. The basic working
principle of such a device is presented in Figure 68(a). iissis of a moving mass on a spring and
dashpot, attached to a moving solid. The acceleration ofrtbeing solid results in a differential
displacement between the mask/ and the solid. The governing equation is given by,

Mi + ci + kx = —Mdy (20)

In the frequency domaim/z is given by,

x -1
el 21
Ty —w? 4w+ 2ifwwy, (21)
with w,, = w/% and¢ = b/2vkm and for frequencies << w,, one has,
T -1
i) Wy

showing that at low frequencies compared to the naturabifregy of the mass-spring systemis
proportional to the acceleratiaty. Note that since the proportionality factorg‘gé, the sensitivity
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of the sensor is increased a$ is decreased. At the same time, the frequency band in whigh th
accelerometer response is proportionat§as reduced.

(@) (b)

S
&
s

v

10°

Frequency(Hz)

Figure 68: Working principle of an accelerometer

The relative displacement can be measured in different ways among which the use of piezo
electric material, either in longitudinal or shear modeg(Fe[69). In such configurations, the strain
applied to the piezoelectric material is proportional te telative displacement between the mass and
the base. If no amplifier is used, the voltage generated leettve electrodes of the piezoelectric ma-
terial is directly proportional to the strain, and thereféo the relative displacement. For frequencies
well below the natural frequency of the accelerometer, tiitage produced is therefore proportional
to the absolute acceleration of the base.

m

[VE——

Longitudinal mode Shear mode

Figure 69: Different sensing principles for standard péeotric accelerometers
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4 Vibration isolation

4.1 Direct vibration isolation

The problem of direct vibration isolation consists in pme¥eg the vibrations coming from a given
source to propagate in the building, or in the surroundigtypical example is the washing mashine
which, when vibrating, transmits the vibration to the flobepending on the design of the building,
such vibrations can propagate through several floors. AmaiRample is a power station located
near other buildings such as a school or a hotel. The vilmsitigenerated by the power station can
propagate into the neighboring buildings and cause noideli@osomfort. Schematically, the source of
vibrations is represented by a force f acting on a rigid badypassm. This rigid body is fixed to the
ground through some elements which are represented byrg s a damper in parallel (Figlre 70).

f

!

m

iy

Figure 70: Direct vibration isolation

The equation of motion is:
mx + bt +kx = f

The force transmitted to the ground (surroundings) is :
fr="0bi+ kx

In the frequency domain, we have

F=(k—w'm+iwb) X = |F| = /(k —w?m)? + w2b?|X|
and
Fpr = (k+iwb) X = |Fr| = Vk?+ w?b?|X|
The isolation factor is given by:

|Fr| _ VE? + w?h?
|F| \/(k —w?m)? 4+ w?2b?

and using the definitions @f= b/(2v'km) andw,, = \/k/m we get :

\Fr| _ L+ (2650
Fl Ja= (22 + ey

The isolation factor is a function of the frequencyand is plotted in Figure71.

(23)
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Isolation domain

|FI/]F] |F-|/|F|<1
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10‘ I 1 1 1 ]

Figure 71: Isolation factor for the direct vibration isadat problem

One can distinguish two different domains:

« for frequenciesv < v2w,, | Fr|/|F| > 1, this is the amplification domain where no isolation is
achieved, the amplitude of the force transmitted to themlas greater than the force applied to
the body. In this domain, adding damping improves the sdnathe amplification at resonance
decreases.

« for frequenciess > v/2w,, we are in the isolation domain: the force transmitted to tioeigd is
smaller than the forcé. In this domain, adding damping has a negative impact orsttiation
which decreases.

For the damping, an ideal situation would be to have a daméchahas a high damping at low
frequencies and a low damping at high frequencies. Masesiath as rubber and elastomers exhibit
that type of damping properties. The problem of direct \tibraisolation consists in designing the
one dof system such that for the excitation frequenciesidered, we are in the isolation domain. If
these excitation frequencies are low, it requires to haverg ow resonant frequency of the single
dof system. There are two ways to achieve this: the first ote ligve a very soft spring. Note that
the spring must be strong enough to sustain the static lodmkehass which in general does not allow
to use very flexible springs. The second way is to increasentdmes of the system. This can be done
for example by adding a rigid and heavy foundation to thedrigpdy of massn.

4.2 Inverse vibration isolation

The problem of inverse vibration isolation consists in gasig an isolator on which sensitive equip-
ment is attached in order to prevent the vibrations from thérenment to reach the sensitive equip-
ment. Examples are precision devices such as microscofiisography machines which need to be
isolated from ground motion, or buildings which need to lmaited from the ground motion due to
earthquakes. Schematically, the vibrations from the envirent are represented by a ground motion
x, and the sensitive equipment is the rigid badyattached to the ground through a spring and a
damper (Figuré2).
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Building,
Sensitive equipment

Ground motion

Figure 72: Inverse vibration isolation

The equation of motion is:
mi+k(x —y)+b(&—9)=0
which can be rewritten
ma + kr + bt = ky + by
In the frequency domain we have:

(k — wim + iwb) X = (k +iwb) Y
The transmissibility of the one dof system is defined as:
Yl VEToF
X (k= w?m)? + w?b?
One can note that while the physical problem is differerd tthnsmissibility has the same expression
as the isolation factor i .(23). The transmissibility is adtion of the frequency and represented in

Figure[73. The same remarks as for the isolation factor caimgethe damping and the design of the
isolation device hold.

Isolation domain

IXI/[Y] IX|/[Y|<1

Amplification
4| domain

£=0.01

Figure 73: Transmissibility for the inverse isolation plexh
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The following movies illustrate the effect of an isolator fifferent problems such as building
isolation for earthquakes:

Vi bration isolation denponstrations :
htt p: //ww. yout ube. com wat ch?v=nt V6LQF1GxA
http://ww. yout ube. conf wat ch?v=r eYt UNLXvt 8
http://ww. yout ube. com wat ch?v=YPAQZXc33gE
http://ww. yout ube. cont wat ch?v=MboMiAz RUFO
htt p://ww. yout ube. com wat ch?v=ChaqgMDc4ces
http://ww. yout ube. conf wat ch?v=Zgl Xp3czrrM
http://ww. yout ube. cont wat ch?v=Fw7aQMITBNM

Application to buil dings:

http://ww. yout ube. com wat ch?v=phgdkgn9aTI
http://ww. yout ube. conf wat ch?v=Nc4JcWhénYs
htt p://ww. yout ube. com’ wat ch?v=EsOBp7XYJbk
http://ww. yout ube. conf wat ch?v=5zVUDyBaN3E
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5 Multiple degree of freedom systems

Figure[74 represents a series of systems which can be maatetadltiple degree of freedom systems.
In the example of the automobile suspension, the motion bas kxtended to multiple degrees of

freedom by considering both the vertical translation aredthation of the car, as well as the flexibility
of the tires (which adds two degrees of freedom).

- Rigid floor

-
—
—_
-
—
—_

Rigid floors
| Flexible columns K / k

\ W —> - m AAA m
\\\ \\‘ Ground motion \ /

] ]

=S <~ Flexible columns

Ground motion m

Rigid car Rigid car

Y

Flexible suspensions Flexible
fi\ G ‘ A suspensions_>
_> Rigid wheels —»

1 Flexible tires —»
. Road irregularities i
Rigid wheels Road

Flexible tires irregularities

m
Disks —» | M
m

Engine § k .
vibrations i Engine

vibrations

Figure 74: Examples of multiple dofs systems
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5.1 Response of a multiple degrees of freedom system withad&emping

Let us consider the two dofs system represented in Figurd #é&ce f is applied to the second mass.
The first law of Newton is applied to each mass:

mdi'l = —kxl -k (.%'1 — 1‘2) (24)
mag = k (1‘1 — .%'2) —kxo+ f (25)

5 £, ﬁk ?KXZ
g

éj _r;i‘ kX,

Figure 75: Forces acting on a two dofs system with two massesheiee springs

This set of equations can be written in a matrix form:

m 0 .%".1 2k —k X . 0
o E S w {R)-T) &
or in a more compact form

Mi+ Kz =F (27)
whereM is the mass matrixi is the stiffness matrixf is the vector of forces, and is the vector
containing the dofs of the system (hargandzs). The form of equations i (27) can be generalized
to write the equations of motion of a system witldofs. In such a case, the size of the matrices is
x n and the size of the vectorsiis

5.1.1 General solution of the equations of motion

The general solution of (27) can be obtained assuming
xl(t) _ Ay rt rt
Ln b= e

(K +r*M)¢ =0

This set of equations admits a non-trivial solution if

Equation [[2V) becomes:

det(K 4+ r*M) =0
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The roots of the determinant are purely imaginary and apg&eapmplex conjugate pairs (this is due
to the nature of the matricds and M which are positive definite). They can be written

P2 = o2

so that equatiori(27) can be written:
(K —w’M)p =0

This set of equations is an eigenvalue problem. Its solutidingive a set of eigenvalues called the
eigenfrequencies, i=1..n, wheren is the number of dofs) and the associated eigenvegtocslled
the mode shapes. The general solution of the equation obmedin be written as the sum of functions
in the spatial domain (the mode shapes) and oscillatorytifume in the time domain (oscillations at
frequenciesy;):

n

x(t) = Z (Zi1cos(wit) + Zigsin(wit)) s
=1

The coefficientsZ;; are a function of the initial conditions (displacement astbuity).

lllustration: two degrees of freedom system
The eigenfrequencies and mode shapes of the system refegefrigurd /b satisfy the set of equa-
tions:

(K —w?M)y =0 (28)

A non-trivial solution exists if

9 _ 2k — w?m —k _
det(K wM)-det( K 9k — wlm =0

which leads to
(2k — w?m)(2k — w?m) — k* = m*w? — 4kmw?® + 3k* =0

The solutions of this second order equatief (s the unknown) are:

wi =k/m

w3 = 3k/m

The mode shapes associated to these two eigenfrequeneiebtamed by replacing successively
by w; andws in the first (or the second) line df (P8):

Forw? = k/m

k
<2k — —m) A1 — kAQ =0
m
k‘Al = k?AQ = A1 = AQ
Forw? = 3k/m
3k
(2k — —m> Al — kAQ =0
m

—kAl = kAQ = A1 = —A2
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The two mode shapes are then given by (note that a mode shalpeais known up to a constant)

v {)
o= (1)

The first mode shape corresponds to a translation of the tvesesan phase (there is no strain
in the middle spring), while the second mode shape correlsptma motion of the two masses in
opposition of phase (FiguEel76).

Mode 1 Mode 2
X ;
l ; Xo1
X, ¥ m
3 i
X, Jr\i X, ¥
m

m
Figure 76: Mode shapes of the two dofs system representeidungE’5

The general solution can be written in the form:

{ ?8 } = (Z11 coswit + Z19 sinwit) { 1 } + (Z21 cos wat + Za sin wot) { 11 }
; _

Let us assume that a zero initial velocity is imposed to the mvasse£; (0) = 22(0) = 0) and
that an initial displacement is imposed in the form of

22(0) [ | 1mm
These four conditions allow to determine the four constafits The solution is
zi(t) | _ % coswit — % cos wat
{ xo(t) } a ( %coswltﬂ— %coswgt (mm)

The free vibration of the two dofs system subject to theg@lrionditions is shown in Figute V7.
The presence of two frequencies, due to the existence of igamfeequencies can be noticed. As
the number of dofs increases in a system; the number of egmprdncies also inscreases and the free
vibration contains more and more frequencies.
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X; (mm)

Figure 77: Free vibration of a two dofs system subject to d@malrzero velocity and an imposed
displacement:; = 0, zo = 1(mm)

5.1.2 Orthogonality of the mode shapes

In the following, we will demonstrate the property of ortlooglity of the modeshapes:
VI M = i
vi Ky = Sijpaw;

Praoof:
Let us take two eigenfrequencies andw; such thaty; # w;. The associated mode shapes @ye
andy;. We have:

(K —wiM) ;=0

(K —wiM); =0

Let us premultiply the first expression Iz»f and the second by and make a substraction:

ijszi (Wi —w?) =0

where we have used the fact that matfixis symmetric so that! K+, = ijK ;. As we have
assumedv; # w;, we find:
UMy =0 i #j
Fori = j; we define
W My =

The second orthogonality relationship is easily deducedvehavek; = w?Mv; and therefore

O] Ky = wiyf My =0 i #
VK = Wiyl Mab = Wi

The orthogonality conditions can also be written in a mdwbm. Let us define the matrix of mode
shapes whose columns are the mode shapes:

U=1[v1 o .. ]
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we have:

YT MY = diag(p,)
VTR = diag(piw?)

wherediag(u;) is a diagonal matrix with the valugs on the diagonal:

. . 0
diag(p;) = e
0 0 ... pun

These relationships express the fact that the mode shapesglangonal with respect to the matri-
cesM andK. They can therefore be used as a basis of orthogonal fusdiborepresent the solution
of the problem.

5.1.3 Particular solution of the equation of motion
Let us start from equatiof (27) and decompose the solutidheoproblem in the basis of the mode

shapes:

n

() = 3zt

i=1
which can be written in a matrix form :
r=WUz

wherez is the vector of modal amplitudes. Let us repladey ¥z in (Z7) and premultiply byt "', we
have:
UIMU: + VT KUz =0T f

and using the orthogonality conditions, we find:
diag(pi)% + diag(piw?)z = U f
which is a set of, uncoupled equations of the type
pi%; + pawi z = Fy (29)

Equation [[Z2D) corresponds to the equation of motion of aesidgf system with

* amasg;, called the modal mass

* a stiffnessu;w?

e anatural frequency; = 27 f;

- aforceF; = ¢! f (modal excitation)

In summary, by writing the particular solutior(¢) as a function of the modal amplitudegt)
and the mode shapes, it is possible to transform the initial set ef coupled equations into a set
of n uncoupled equations. Each independent equation corrdsgorthe equation of motion of a
single dof system. All the tools presented in Secfibn 3 carefiore be used to find the solution of the
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equations of motions of a mdof system.

The particular solution can be calculated in the frequerayain following the same approach,
assumingr(t) = Xe™! andf(t) = Fe™! whereX and I are vectors of size, we have:

(K—w’M)X =F (30)

While this equation can be solved directly by inverting thatrix (K — WM ) at each frequency,
a simpler and more efficient method consists in assumingthiegasolutionX can be written as a
function of the mode shapes:

Xw) =Y Ziw),
=1

which can be written in a matrix form:
X =97

whereZ is a vector of modal amplitudes. Let us replace[in] (30), aednpitiply by ¥7', we have:
(PTKV — VT MU) Z = VTF

and using the orthogonality properties:

pwd 0 .. 0 wr 0 ... 0 7 I F
0 w3 .. 0 20 ke 0 Zy | ) wIF
0 0 unw% 0 0 ... pun Zn ¢,7;F

We obtain a set ofi decoupled equations. The unknowfiscan easily be solved for:

1

Zj(w) = %TFW
J

The Bode diagram of/; is identical to the Bode diagram of a single dof system antipudsent a
resonant peak at the angular frequengy In the absence of damping;; is always real (positive
or negative). The displacement(w) can be retrieved by summing the contributions of the differe
mode shapes (Figutel78):

n n TF ;
Xw:Z%w%:Z¥%4@
j=1

j=1 p (w5 —

The Bode diagram oK (w) will therefore present a maximum efresonant peaks.
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£, f, f

Figure 78: The respons¥ (w) is the sum of the response of single dof systems with amglifid
j=1..n

lllustration: two degrees of freedom system

We consider again the two dofs system represented in (Hif)teThe matrix of the mode shapes

IS written:
1 1
=[]
We compute the values @f;:

1 1 m 0 1 1 2m 0
R AR

e[ AR

The modal amplitudeg; are given by:

and the values of; = ¥7'F:

1
Zy= s
2m (- — w?)
-1
Z —
? 2m(3E — w?)

and the response of the system is:

{50 w1 ) )

The Bode diagrams ok (w) and X»(w) are represented on Figure] 79, where the modal ampli-
tudesZ; and Z, are also represented. It is interesting to take a closerdbekhat happens between
the eigenfrequencieg;, and f,. For mass 1, the contributions, and Z, are in phase, so that the
amplitudes are added, resulting in a higher amplitude&(of For mass 2, the contributiors;, and
Z5 have an opposite phase. At the frequency at which their &mdliis equal, the sum of the con-
tributions is therefore zero: at that frequency, mass 2 tsyfmving. This frequency is called an
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anti-resonance The resonant frequencies of a system are a global proghgy are present on the
Bode diagram for each dof of the system), while the antiftasoes are a local property of the system

(they are present only at specific dofs of the system).

f, f,

Contribution of

IXil

Contribution of

L
0.1

Mode 1
(phase)

7 Mode 1

IXil

Contribution of

Contribution of
mode 2

mode 1

(phase)

Mode 2
(phase)

1 (phase)

Mode 2

L
0.1

Frequency (Hz)

L =
0.3 0.4 0.45

L L
0.1 0.2

Frequency (Hz)

Figure 79: Bode diagram of the response of the two dofs sys{@mnand X5)

The following videos illustrate the resonance of singlesdarfid a three dofs systems:

3 SDOF systens :
3 DOFS system:

http://ww. yout ube. com wat ch?v=i yw4AcZuj 5k
http://ww. yout ube. com wat ch?v=0aXSnPgl 1os

5.2 Response of a multiple degrees of freedom system with damg

Let us consider the two dofs system represented in Figur®&8mping has been introduced through

three viscous dampers.

x]
f

k;lﬁb gﬂkx;bxz
v X, f
m

So T

K(X;-%)+b(X:-X,)

k§+b

X

ﬂgfb

3

zpt

kx,+bx,

Figure 80: Two dofs system with damping

The equations of motion are obtained as in Sedfioh 5.1, dakitm account the forces due to the
dampers. In a matrix form, we have:

1
T

m 0
0 m

Kl

ol

20 —b
—-b 2b

I

T
T2

b
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which can be written in a compact form
Mi+Ci+ Kz =f (31)

whereC' is the damping matrix.

5.2.1 General solution of the equations of motion

The general solution of the equations of motion of a dampedfsygstem can be obtained by posing
561(75) _ Al rt __ rt
(o =L e

(K +rC+r*M)¢p =0
which admits non-trivial solutions for the roots of

Equation[[31l) becomes

det(K +rC +r*M) =0

The roots of this determinant are complex, and the free resps characterised by oscillatory func-
tions with an exponentially decaying envelope in the timendim. The associated eigenvectors are
also complex, which means that their different componemsat in phase. As it is not very common
to use complex mode shapes in structural dynamics, we willisouss them in further details.

5.2.2 Particular solution of the equations of motion

An alternative to the use of complex mode shapes is to cadcthe response of the system using the
real mode shapes associated tokhand M/ matrices. Let us start from equatién{31) and decompose
the solution of the problem in the basis of the mode shapes:

n

2(t) = 3 (),

i=1

which can be written in a matrix form :
=Wz

wherez is the vector of modal amplitudes. Let us repladey ¥z in (31) and premultiply by#”', we
have:
UIMu: +9T00: + 9T KOz =0l f

In general, the term¥” C'¥ is not diagonal and the equations remain coupled. An appation can
be obtained however in the following cases:

* Rayleigh damping: this damping model assumes that thdaw@tcan be written as:
C=aK+ M
In such a case, the teni’ O reduces to:
TCw = 9T (oK + M)V = diag(opw? + Bug)

This model is often used as an approximation in order to da@eahe equations, but the model
has no physical meaning.
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» Modal damping: when the damping is small, the off-diagaeahs of&” C'¥ can be neglected,
and it reduces to:

2#151&)1 0 0
\I/TC\IJ _ 0 2#252&)2 0
0 0 ce 2Up&nwn

where we have introduced the modal dampjng

The modal damping is a more general and flexible model thateRgnydamping. This can easily
be shown by equating the result of the prodiiéiC'¥ in the two models:

diag(oiw? + Bui) = diag(2&; priw;)

& = % <awi+ %)

In the modal damping model, the damping coefficient of eacerean be set independently, while
in the Rayleigh damping model, the modal damping coeffisidratve a specific evolution which is
a function of only two coefficientsx and 5. An example of evolution of the coefficients for a
Rayleigh damping model is shown in Figure 81, where it candsn ghat the model leads to very
high values of damping at low frequencies and at high fregiesn Such values are in general not in
accordance with the damping level at those frequenciestten®ayleigh model can only fit to two
values of¢;. In general, it is difficult to obtain an accurate model of ixa’ and to determine the
modal damping coefficients. In the absence of experimental results which could be wsitbntify
these values, a fixed value can be used. This fixed value depenithe type of structure considered.
It is of common practice to use a fixed valuefof= 0.01 in the absence of information about the
damping.

which leads to :

0.3f

0.25f

0.15

0.1F

o, , ‘ ‘0)3 ‘ 0)4‘ 50
()
Figure 81: Evolution of the modal damping coefficients far Rayleigh damping model
Using the more general form of the modal damping model, we find

diag(p:) + diag(2&pw;) 2 + diag(pwi)z = O f
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which is a set o, uncoupled equations of the type
[iZ; + 26 piwiz + piwiz = F (32)
Equation [[3R) corresponds to the equation of motion of a @ahsingle dof system with
* a masg;, called the modal mass
* a stiffnessu;w?

e a damping coefficient;

a natural frequency; = 27 f;
« aforceF; = ¢! f (modal excitation)

The particular solution can be calculated in the frequerayain following the same approach,
assumingr(t) = Xe™! andf(t) = Fe™' whereX and F’ are complex vectors of sing we have:

(K +iwC —w’M) X = F (33)

the solutionX is written as a function of the mode shapes:
X(w) = Zj(w);
j=1

which can be written in a matrix form:
X =97

whereZ is a complex vector of modal amplitudes. Let us replacéin), @ad premultiply by¥”', we
have:
(PTKV +iwlT OV — U MV) Z = UTF

and using the orthogonality properties and the modal dagnpiodel:
,uj(wjz —w? + 2i¢ww;)Z; = Fj
We obtain a set of decoupled equations. The unknowfiscan easily be solved for:

] F

1 ( ]2 — w? + 2iwwj)

Zj(w) =

The Bode diagram of; is identical to the Bode diagram of a damped single dof systachwill
present a damped resonant peak at the angular frequenBye to the damping?; is complex. The
displacemenfX (w) can be retrieved by summing the contributions of the differeode shapes:

" " VI Fy;
Xw)=)» Z; ;= L
(W) jzl ](w)w] ]Zl ,uj(wjz _ w2) + 2i£jwwj
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lllustration: two degrees of freedom system

Let us consider the system represented in Figule 80, andhak®llowing values for the different
coefficients:k = 1N/m, m = 1kg andb = 0.04Ns/m. In the present case, matiixis proportionnal
to matrix K and the produc®#” C'¥ is diagonal. We calculate the valus of & = 2% and& =
3.5%. The forced response of mass 2 as a function of the frequsnepiesented on Figurel82. Note
that the second peak is more damped than the first one duefarcthtbats, > &;.

&=2%___

0 T T T T T T
50 [
O(°)-100 -
-150 -

200 L L L L L L L
0 0.05 0.1 0.15 0.2 0.25 03 0.35 04 0.45

Frequency(Hz)

Figure 82: Bode diagram for mass 2 of the two dofs system withraping matrix propotionnal to
the stiffness matrix

Let us now remove the damper between mass 1 and the groundtd@88). MatrixC' is not
proportional to matrix’’ anymore so that the produét’ C'W is not diagonal. Let us neglect the off-
diagonal terms and compute the modal damping coefficienesg#é; = 1% eand$, = 2.9%. On
Figure[84, the Bode diagram for mass 2 is plotted and theisolfmund neglecting the off-diagonal
terms is compared to the solution obtained with the coupbtpehgons (no terms neglected). The
figure shows that the solutions are almost identical. Itésdfore justified to neglect the off-diagonal

terms because the damping is small.

Figure 83: Two dofs system with damping - the viscous dampéwréen the ground and mass 1 has
been removed
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0" Modal damping

L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Frequency(Hz)

Figure 84: Bode diagram for mass 2 of the two dofs system wittorproportionnal damping:
comparison between the exact solution and the approximasing the modal damping model for a
low value of damping

Let us now assume that the damping coefficientis0.2N s/m. The modal damping coefficients
are& = 5% et&, = 14.43% which cannot be considered as small damping anymore. Ircésis, as
shown in Figuré 85, the modal damping model deviates fronexiaet solution.

£=0%~—,

modal approach
= = = exact solution

£,=14.43%

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

o(%)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Frequency(Hz)

Figure 85: Bode diagram for mass 2 of the two dofs system wittorproportionnal damping:
comparison between the exact solution and the approximasing the modal damping model for a
high value of damping

5.3 MDOF application: the tuned mass damper

A tuned mass damper (TMD) is a device that it attached to agsgiretructure in order to damp its
vibrations. The first type of tuned mass damper we are goistutty is a mass-spring system . In this
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study, we assume that the primary system is modeled by axadeni 1 DOF system (FiguEe186).

Tuned mass damper

Primary system

Figure 86: A mass-spring tuned mass damper (TMD) attachadotomary structure modeled as a 1
DOF system

The equations of motions of this 2 DOFs system are:

M 0 @ [ B+b b ) K+k —k x| f
0 m 1."2 —b b Z;Q —k k i) o 0
In the frequency domain, we havg(t) = Xie™f, 2o(t) = X2e™t, and f(t) = Fe™' which leads
to:
K+k+iw(B+b)—w?M  —(k + iwb) X3\ _[F
—(k + iwb) k — w?m + iwb Xo [ 10
we solve for the displacement of the primary syst&m
k —w?m + iwb
(K +k+iw(B+b) —w?M)(k —w?m + iwb) — (k + iwb)?
Let us first consider the case where there is no damping inM2 (b = 0). In this case, we have:

X, /F =

k— w?m
(K +k+iwB —w?M)(k —w?m) — k2

X,/F =

We see that the displacement of the primary struciievill be zero at a frequency given by

k
w=1/—
m

which is the natural frequency,, of the TMD. If one wishes to cancel the vibration at the resna
frequency of the primary structufe = \/K/M, we need to have

wy, =0

We define the frequency ratio= w,, /2. In order to cancel the vibration at the resonant frequeificy o
the primary structure, we need to have- 1: the TMD is "tuned” to the eigenfrequency of the primary
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structure. Figuré 87 shows the Bode diagramXgffor the primary structure with and without the
TMD. The addition of the TMD results in an anti-resonancehatnatural frequency of the primary
structureQ). The amplitude of the vibration is also reduced in a narrayqdiency band around.
Outside this frequency band, the amplitude of vibratiomiéased, and there are now two resonant
peaks leading to a very large amplification around the twerdigquencies of the system. The use
of such a device is interesting only if the excitation sousc@ a narrow band around the natural
frequency. Otherwise, although the amplitude around teen@nce is decreased, it is increased at
other frequencies, so the problem is only shifted in fregyen

without DVA

with undamped DVA

reduced vibration n

0.5 Q1=0)1 OJ‘
Figure 87: Effect of an undamped TMD on the primary strucsuresponseX

If one wishes to lower the vibration of the primary structdfe in a wide frequency band around
its natural frequency?, it is necessary to introduce damping in the TMD+# 0). Figure[88 shows
the response of the system for different values ahd for a tuning parameter= 1. The mass ratio
defined ag. = m/M is equal to 3%.

Without DVA

10

10

IX,/F|

10" |

10°

o o
Figure 88: Effect of a damped TMD on the primary structuresponseX;

Note the existence of two poinf3 and( where all the curves for the different valuesbafross.
The optimal tuning of a TMD consists in finding the parameterg: andb such that the two points
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P and( are at the same height, and such that the resp&ade maximum at these two points. Den
Hartog derived simple equations which lead to an approxanaif this optimal TMD. The equation
leading to the same height fét and( is given by
1
=— 34

V=14 (34)
In general, the value of the massis chosen a priori. For practical reasons, it is chosen suah t
w does not exceed a few percents of the mass of the primarynsy&gquation[(34) is then used to
determine the value df. The optimal damping is then found with

_ 3 b
§= \V8(i+ 1)~ 2vEm (35)

which gives the optimal value fdr. The response of the primary structure with an optimal TMD is
shown in Figuré_89.

without DVA

0 o
Figure 89: Effect of the optimal TMD on the primary structareesponseX;

There are many examples of installation of TMDs on civil exegring structures, such as:

< The Millenium Bridge, for which this solution was adoptededo the large vibrations induced
by pedestrians walking on the bridge which led to the closirthe bridge directly after its
opening.

http://lwww.gerb.com
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e The John Hancock Tower in Boston (1976), where two TMDs isting of large steel blocks
of approx 5.2x5.2x1m (weighting 270 Tons) were installethattop of the tower (tuned to 0.14
Hz).

http://www.lemessurier.com

e The city corp Center in New York (1977), where 1 TMD of 400 $acting in two directions
has been installed (tuned to 0.16 Hz).

http://www.estructura.it

e The Chiba Port Tower (Japan - 1986), where 1 TMD of 15 Tonm@dh two directions has
been installed (0.44 Hz).

Xdireclion

Y-diraction

Rall (¥-direction)
- FRoller bearing (Y-direction)

Tension Spring (X-direction) 'Qil bulfer (¥ direction)
Rack and Pinlon (Y-direction)

Damping device (Y-direction)

http://www.iitk.ac.in
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The two following movies demonstrate the efficiency of a TMipked to a host structure:

Undanped pendul umtuned nass danper:

http://ww. yout ube. com wat ch?v=bgJadkuf es4
Tuned mass danper on a bridge:

http://ww. yout ube. coml wat ch?v=e01_3mJCGeyw

The second type of TMD we are going to study is the pendulum TMBtead of a mass-spring
system, a pendulum is attached to the primary structurei(€i@l). Here again, the primary structure
is modeled as a one DOF system. Note that the direction obomdialways horizontal for this type
of TMD. A mass-spring TMD can be implemented to damp the nmogibher in the horizontal, or the
vertical direction.

X
K
J\/\/- M <4— Primary system
_E_ : f
B : —>
| Pendulum tuned mass damper
0
b

Figure 90: A pendulum TMD attached to a primary structure eted as a 1 DOF system

The equations of the PTMD attached to the primary structeeenan-linear. After linearizationd(
small= cosf ~ 1, sin @ ~ 0 andf? neglected), they are given by:

(M +m)i +milf + Kz + Bi = f
m(i + 16) + mgh + =0

In the frequency domain, we havét) = Xe™?, §(t) = Q™! and f(t) = Fe™! which leads to:

K +iwB —w*(M +m)  —milw? — iwbl X\ _ | F
—w?m mg + iwbl — w?ml ©f[ 10
We solve the equation for the displacement of the primanctire X

X ¥+iwb—w2m

F (K +iwB —w?(M +m)) ("2 + iwb — w?m) — w?m(iwdb + w?m)

Let us first consider the case where there is no damping inTMLR we have:

X %—uﬂm

F (K +iwB —w?(M +m))(4 — w?m) — (w?m)?
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l
which is the eigenfrequency of the undamped TMD and

K
Q=1/—
M
which is the eigenfrequency of the primary structure wititbe TMD. In order to cancel the vibration

at the eigenfrequency of the primary structure, we needve ha= 1 where

Wn
Q

Figure[91 shows the response of the primary struciireith and without PTMD ¢ = 1) and for
several values of the mass of the pendulum. Note that thefeagriency of a pendulum only depends
on its length, and not on its mass, so the tuning is not altetesh the mass is increased. We see that
the two peaks are further apart as the mass increases. As @ase of the mass-spring TMD, when
there is no damping, the vibration can be canceled at theaesdrequency of the primary structure,
but we note the appearance of two peaks away from that resstregnency. The device is therefore
only suited when one wants to decrease the vibration in @awdrequency band around the resonance
(the frequency band can be made larger if one increases tbeahthe PTMD).

UV =

10" ¢

without PTMD

————
——————
-~

==

10" ¢

IX/F| :

10 ¢

107

10° : : i

Figure 91: Response of the primary structure to which andwneed PTMD is attached

Let us now consider the case of the damped PTMD. As the eqaatie different from the mass-
spring TMD, we cannot apply equatiois{34) and (35). Thefiinsing rule is given by:

2
VvV =
\/(2 +3u) (1 + 2p)
The second rule is much more complex and given by:
ﬁ\/ﬁ\/3\/ﬁ«/3u2+4u+1\/3u+ —9p2—11p—3
T =
\/—3,u2 —bpu+ 3+ A+ 13 +2-23p+2(4p+2)
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with
b

r = —-—"
2mS2
This expression can be fairly well approximated by a fifthesnolynomial:

r=—4351p" +10744° — 99.1u2 + 4713 + 0.0167

for values ofu < 0.1.
The response of the primary system with an optimal PTMD isasgnted on Figufe P2.

10" ¢

Without PTMD

10" ¢

IX/F|

Figure 92: Response of the primary structure to which amwdtdamped PTMD is attached

The most famous PTMD is the one in the Taipei 101 building (FéfB3), in Taiwan. The damper
consist of a steel sphere 6 meters across and weighting n&8siespended from the 92nd to the 87th
floor.

=y

e ———

3
i3
1]
i3

> —
E=rE—r—
S n——

i ——

Figure 93: The Taipei 101 building with a PTMD (http://erkipiedia.org/wiki/Tunedmassdamper)

For more details on the building and the attached PTMD, see:
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Tai pei Di scovery Channel: http://ww. youtube. conl wat ch?v=xF7f 0Z- oi So
Tai pei 101 sketch of pendulum http://ww. yout ube. coml wat ch?v=uybEXCkkr sw
Tai pei TMD Motion on May 12, 2008 : http://ww. yout ube. con’ wat ch?v=NYSgd1XSzZXc

Additional movies (not played in class)
Citicorp Center
http://ww. yout ube. conf wat ch?v=TZhgTewkhTQ

htt p: // ww. yout ube. com’ wat ch?v=4f UngHOgOW
http://ww. yout ube. cont wat ch?v=Il Bj yB8EY2mi#t =2

83



6 Continuous systems

In the previous chapters, we have studied systems which eaniplified and modeled as masses
connected with springs and dampers. In the real world, tstres are always continuous. Some
continuous structures can be simplified and be modeled amsernbars, while others cannot. In
the first part of this section, we will discuss the computatid the dynamic response of bars and
beams. The second part will be devoted to the computationeodlynamic response of more general
continuous structures. A continuous system can be seere disnib whenn tends to infinity of an
dofs system. A continuous system therefore has an infiniteben of eigenfrequencies and mode
shapes.

6.1 Beams and bars
6.1.1 Boundary conditions for beams and bars

If we consider a bar in traction, the displacement is in thairection (Figurd 94). Atz = 0 and
x = L, the bar can either be free or fixed. A fixed condition corresisotox = 0, while a free
condition corresponds to the absence of an applied norma fé = Fe = E%, which we usually

simplify to ' = 94=0 (Figure[9b).

X
—

7 u(x)

Figure 94: Bar in traction: the displacement is in thdirection

u=0 N=0 -> u’=0

NNNN

Figure 95: Boundary conditions for bars in traction

If we consider a beam in bending, the displacement is injtdeection (Figurd_96). Atr = 0
andz = L, there are four possible boundary conditions. The first taariolary conditions are linked
to the vertical displacement which is either fixgd=£ 0) or free (the shear forc€ = —EIy'/! =0,
which can be simplified tg//! = 0), while the second set of boundary conditions is linked ® th
rotation which is either fixedi{ = 0) or free (the bending momedtf = —EIy” = 0, which can be
simplified toy” = 0) (Figure[9T).

/]

X == ]
/
/

Figure 96: Bar in bending: the displacement is in gtdirection
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Figure 97: Boundary conditions for beams in bending

6.1.2 Barin traction: equation of motion

The equation of motion for a bar in traction can be found biaisag a small part of the bar of length
dz as shown in Figurg 98:

—N + p(z,t)de + N + dN = (pAii(z,t)) dx

wherep(z, t) is the load per unit of length in direction p is the density of the materiak §/m?) and
A'is the area of the section of the bar. This expression leads to

dN 0 ou 0u(w,t) .
assuminglt' A is constant. We therefore have
0?u(z,t)
EA——F—2 — pAi =—
52 pAii(z,t) = —p(z,t) (36)
dx
N N+dN
X — s> [ —»
— t
u(x,t) P(x.t)
/) / N\
7/ T 1 \
7 N
L

Figure 98: Equilibrium of a small part of a bar of length

6.1.3 Barintraction: mode shapes and eigenfrequencies

Assumingu(z,t) = U(z)e™!, the mode shapes and eigenfrequencies are the solutioe efjtiation
of motion with the right-hand side equal to O:

2
EAM + pAw?U =0
dz?

which can be rewritten



This equation is of the second order for the variabléhe general solution can therefore be written
U(z) = Ae™ and the characteristic equation is given by:

2 P 2
— _0
re 4+ w

T2 = :|:in / %
and the general solution is:

U(z) = Acos(w\/%w) + Bsin(w\/%x)

The constantsl and B are a function of the boundary conditions. For a fixed-fixe wa have:

The two roots are

U@) = 0=>A4=0

UL) = Bsin(w\/%L):O

There exists a non-trivial solution if we have

The eigenfrequencies are therefore given by

T |F 1
Wp = N— — n = ey OO
n L p ) b
and the associated mode shapes
nnr

U(z), = sm(T) n=1,..00

The three first traction mode shapes of a concrete cylinderepresented in Figufe199. The color
code corresponds to the amplitude of displacement in thal ditection. One can see clearly the
presence of nodes of vibration (zero displacement) in madasd 3 (in addition to the faces of the
cylinder which are also fixed).
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Mode 1 Mode 2
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Figure 99: First three modes of a bar in traction

6.1.4 Barin traction: orthogonality conditions

For bars in traction, the orthogonality conditions are git:
L
0

L
/0 EAU}Uj dx = b;jpiw;
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Proof: Let us consider two different mode shagésandU; wherew; # w;:

EAU! + pAw?U; = 0 (37)
EAU} 4 pAwiU; = 0 (38)

we multiply (37) byU; and integrate from 0 t@, and multiply [(38) byU; and integrate from O td..
L
/ (EAUZ// + pAwZ-QUZ-) Ujdr =0 (39)
0
L
/O (EAUJH + pijzUj) Uidx =0 (40)
Integrating by parts, we have
L L
/ EAU!'U; dx = [EAULU;|: — / EAUU, da
0 0
L I L
/ EAUJU; dx = [EAUJU;) —/ EAUU dx
0 0

The terms
L

[EA U{Uj]o

and
(BAUU

are always equal to zero because at L andxz = 0 we either havé/ = 0 or U’ = 0. We thus have
L L
/ EAUIU, de = — / FAUU dz
0 0
L L
/ EAUU; di = - / EAUU! dx
0 0
replacing in[(39) and(40) we have:
L 2
/0 (—EAUU; + pAwiUUj) dx =0 (41)
L
/ (~BAUU; + pAw;U;U;) da =0 (42)
0
Substracting[(42) froni_(41), we have:
L
/ pA(w? —wjz)Ui Ujde =0 i#j
0

which leads to .
/pAUindx:O i#j (43)
0
and defining
L
i = / pAU} du (44)
0
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@3) and[4#) give the second orthogonality condition. Wt reavrite [41):

/ EAU] U’d:c—/ pAwU;Ujdx
0

and taking into accounf (#3) arld{44), we have:
L

i . .
/0 FAUUjdz =0 i#j

L
/ EAUP dx = Wiy,

0
which is the first orthogonality condition.

6.1.5 Barin traction: projection in the modal basis

Starting from the equation of motion

O*u(x,t) 0?u(x,t)
BAGa— A =

we assume that the solution can be written as a function ahthee shapes:

—p(.%',t)

oo

= Ui(x)zi(t)
=1

Plugging in the equation of motion, we get:

EA i Uz — pA i Uizi = —p(z,t)
i=1 i=1

We multiply byU; and integrate from O td.:

L o0 L oo L
/ (EAZUZ(/ZZ) Ujdx —/ <pAZUZ-2'Z~> Ujdx = / —p(z,t)U; dx
0 i=1 0 i=1 0
and rearranging:
L o0 L
/ EAZU" % dx—/ pAZUZ-Uj Z'Z-dx:/ —p(z,t)U; dx

We can then use the orthogonality conditions to have

pi; + piw;z = Fy (45)
with

L
F, = / p(z,)U; dx
0

Equation[(4b) is the equation of motion of a one dof systemrevhe
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e u; is the modal mass
* w; is the angular eigenfrequency
o pw? is the stiffness
» F; is the modal force
The solution of the equation of motion is therefore an indiigitim of the response of independent one
dof systems.
6.1.6 Barin traction: particular solution
Following the same approach as for the mdof systems studitgkiprevious chapter, we assume
u(z,t) = U(z)e™!
p(z,t) = P(x)e™*

and replace in(36) to get

d*U(z)
dax?

We perform a projection in the modal basis:

EA + pAwW?U(z) = —P(x)

which leads to

and

The harmonic solution is therefore:

Zfo 2 _;2 Ui(x)

The solution is an infinite sum of sdof oscillator solutioas,shown in Figurg_100.

|Z,] |2,

f1 f2

Figure 100: The responsé(w) is an infinite sum of the response of single dof systems witpli&inade
Z;,i=1..n
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At this point, it is interesting to note that although we havanaged to transform the equation of
motion into a set of independent equations, the number cftems is infinite, which poses a problem.
The solution widely used is to truncate the sum in order ttuihe only then first mode shapes. The
choice ofn is dependent on the frequency range of interest for the ctatipn. This is because a
single mode has a significant influence on the response oritg@iencies close to the associated
eigenfrequency where the magnitude of the response is gy A good rule of practice is to choose
n such that

Wn

w < 1—5
wherew is the maximum frequency in the frequency range of inter€hts rule is purely empirical
and is intended to make sure that all the modes with an eiggudéincy contained in the frequency
band of interest are taken into account, with a safety mafggure 102 shows the example of a fixed-
fixed bar of lengthL excited at a point located at a distancelgf and for which the displacement
in the horizontal direction is computed at the same pointre/tige excitation is applied (Figure 101).
The exact solution is compared to a truncated solution whete3. The agreement is very good in
the frequency band from 0 to 700 Hz. Note however that thezesame discrepancies close to the
anti-resonances. This is due to the contribution of the rmatl@igher frequencies which are not taken
into account, and can be easily corrected with a so-calkgit storrection. This is however out of the

scope of this course.

X
—
L/5 F
Ne—mm|— N
Y

L

Figure 101: Fixed-fixed bar excited at L/5 in the horizontiaéction
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u(L/5)/F (dB)

Exact Truncated

400 600 800 1000

Frequency (Hz)

Figure 102: Comparison between the exact solution and éi@olobtained by truncating the expan-
sion in the modal basis to the third mode

6.1.7 Barin traction: comparison with mdof systems

MDOF systems
Orthogonality conditions

TMp; = 65
WK = 6307

Projection in the modal basis

Bar in traction

L
/ pAUZ' Uj dr = (5¢jui
0

L
0

pidi + piwiz = F;

F,=9TF

Response to harmonic excitation

T
Xw) =Y —2 Ly,

— pi(w] — w?)
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6.1.8 Beam in bending: equation of motion

The equation of motion for a beam in bending can be found bgtisg a small part of the bar of
lengthdz as shown in Figure 103:

T +p(z,t)de + T + dT = (pAj) dz

wherep(z) is the vertical charge per unit of length. We know tiiat — ETy!!! so that the equation
of motion can be rewritten:

dT dy
— = _EI—Z = pAj —
I T = PAT = pla,t)
or 4
d*y ..
dx
+
3 7| [l | a7
/] / N\
y = \
Y \
y(x.t)
L

Figure 103: Equilibrium of a small part of a beam of lendth

6.1.9 Beam in bending: mode shapes and eigenfrequencies

Assumingy(x,t) = Y (z)e™?, the mode shapes and eigenfrequencies are the solutioa efjtiation
of motion with the right-hand side equal to O:

dvyY )
which can be rewritten: .
ay pA ,
——— Wy =0
dt ~ EIY
Let us define "
4 _ PA 9
&=
we have .
d*y 4
— =&Y =0
dx? §
The characteristic equation is given by:
rtpet =0
It admits four roots
7“172 = :|:’Lf
r34 = ££
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and the general solution is written in the form
Y (z) = Acos(§x) + Bsin(£x) + Ceosh(éx) + Dsinh(€x)

The constants!, B, C' and D depend on the boundary conditions

For a simply supported beam we have:

Y (0) =A+C=0 =C=-A
Y'0) =& (-A+C)=0 = A=0,C=0

The solution therefore reduces to
Y (z) = Bsin&x + Dsinhéx
and taking into account the boundary conditions at L we have:

Y (L) = BsinéL + DsinhéL =0 (46)
Y"(L) =¢?(—Bsin&L + DsinhéL) =0 47)

The system of equations admits a non trivial solution if teeedminant is zero:

sin{L  sinh§L \
det( —sinéL  sinhéL ) =0

which leads to

sin(¢L)sinh(§L) =0
Apart from the trivial solutioné = 0, we have an infinite number of solutions corresponding to
sin¢L = 0 which is true for

(EL=nm n=1..00

We have

272 pA
L* = —L
¢ “NVEI

with £ = nx which gives for the eigenfrequencies

n2n? |EI
L2\ pA

Wy —

The mode shapes are obtained b repla¢ihdy n= in (46) , which leads td = 0, and therefore

nwx
= sin——
Y (z) = sin 7

Mode shapes 1,5 and 10 are represented on Figuie 104. Thisssin is identical to the mode-

shapes of a bar in traction, but the motion here is in thecadrtirection. The eigenfrequencies are
proportional to the square root of the ratio of the bendiggdily £I and the mass per unit of length

pA. The difference with the bar in traction is the fact that tigeafrequency is proportional te for
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a bar in traction and ta? for a beam in bending. The eigenfrequencies are therefarallggspaced
in frequency for a bar in traction but not for a beam in bending

n=5

n=10

Figure 104: Bending modes 1,5 and 10 for a simply supportachbe

For a double cantilever beam we have:

Y(0) =A+C=0 =C=-A
Y'(0) =¢(B+D)=0 = D=—-B

So that the solution can be written
Y (z) = A(cos(éx) — cosh(&x)) + B(sin(Ex) — sinh(€x))
Taking into account the boundary conditionscat L we have:
Y(L) = (coséL — coshéL)A + (sinéL — sinh{L)B =0 (48)
Y'(L) = (—sinéL — sinhéL)A + (coséL — coshéL)B = 0 (49)
The system of equations admits a non trivial solution of

det cosé L — cosh§ L sinéL — sinh&L '\ 0
—sinéL — sinh€L  cos€L — coshéL )

which leads to 1

cosh&L

This equations does not admit an explicit solution. One wagotve it is to do it graphically. The first
roots are represented on Figlire1105.

coséEL =
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N/Y
! \/\M

roots

N

EL

Figure 105: Roots of the equation allowing to compute themfiggquencies for a double cantilever
beam

Let us notep,,,n = 1, ...co with p = £L, we have:
p2 — £2L2 = w _L2
and the eigenfrequencies are:

o, = Pn [ EL

n = oA

Note that a good approximation of the valuesgfis given by
cosszjpn:g+(n—1)7r

and the mode shapes are obtained by replagingith p,, in (48) which gives:

— (cospy, — coshpy,)

B: A:

sinp, — sinhpy,
and the mode shapes are given by (up to a constant)

— (cospy,, — coshpy) , . x ) T
( (sin(pu 2 ~ sinh(p, 2)

x x
Y, — 2y = Z
w(x) = (cos(ppn—) — cosh(pn—) Sinpn — sinhpn

There exists an infinity of eigenfrequencies and mode shagder all continuous systems. The mode
shapes of ordet = 1,5, 10 are represented in Figure 106.

96



n=1

Figure 106: Mode shapes of a double cantilever bears (., 5, 10)

For a cantilever beam we have:

Y(0) =A+C=0 =C=-A
Y'(0) =¢(B+D)=0 =D=-RB

So that the solution can be written
Y(x) = A(cos(éx) — cosh(&x)) + B(sin(éx) — sinh(&x))
Taking into account the boundary conditionscat L we have:

Y"(L) = (cos&L + coshéL)A + (sin€L + sinhéL)B =0 (50)
Y"(L) = (sinéL — sinhfL)A — (cos EL + coshéL)B =0 (51)

The system of equations admits a non trivial solution of

det coséEL 4 coshé L sinéL + sinh&L _0
sin€L — sinhéL  —(coséL + coshéL) )

which leads to
2 (14 cos§Lcosh§L) =0
-1
cosh &L

Again the solution cannot be solved analytically. Fidur@ i€presents the first roots of the equation.
Let us notep,,,n = 1, ...00 with p = £L, we have:

coséEL =

2 272 PA 5
=217 = =L
pr=g W\ BT
And the eigenfrequencies are:
2
P EI
Wy — L—g p_A = 1, .y OO
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The first two roots are; = 1.876 andp,=4.693. The next roots are approximated by
coséL=0=¢L=n/2+ (n—1)r
The mode shapes are obtained by replagihgvith p,, in (580) which gives:

B — — (?Ospn + COSth) A —
sinpy + sinhpy,

and the mode shapes are given by (up to a constant)

— (cospy, + coshpy)
stnpn + sinhpy,

(sin(pnf) — sinh(pn%))

Yu(2) = (cos(pn ) = cosh(paT) :

There exists an infinity of eigenfrequencies and mode shagder all continuous systems. The mode
shapes of ordet = 1,2, 5 are represented in Figure 108.

1.5¢

COos

(€L)
-1/cosh (EL)

) /M \

EL

-

o

Figure 107: Roots of the equation allowing to compute therfigquencies for a cantilever beam
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Figure 108: Mode shapes of a cantilever beam=(1, 2, 5)

6.1.10 Beam in bending: orthogonality conditions

For beams in bending, the orthogonality conditions arergive
L
/ pAY; Y dx = 0i514
. 0
/0 EIYV]Y] dx = 6;p1w;

Proof: Let us consider two different mode shagésandY; wherew; # w;:

EIVIY + pAL?Y; = 0 (52)
EIVY + pAwiY; = 0 (53)

we multiply (52) byY; and integrate from 0 té, and multiply [53) byY; and integrate from O td.
L
/ (EIY"Y + pAw?Y;) Yjdx =0 (54)
0
L
/0 (EIY]Y + pAw}Y;) Yidx =0 (55)
Integrating twice by parts, we have
L I L
/ EIY!VY;de = [EIYY)], - / EIYY] dx +
0 0
L
= [EIY/Y;), — [EIY!'Y])E +/O EIY]"Y] dx

The term .
111
[EIY Y],
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is always equal to zero because we either Have 0 or 7' = 0 (which leads tdl' = —ET1Y 1 = ()
at the boundaries of the beam, and the term

L

(B,

is also always equal to zero because we either idve 0 or M = 0 at the boundaries of the beam
(which leads to- ETY" = 0). Finally, we obtain:

L L
/ EIY!VY;dx = / EIY]Y/! dx
0 0

and in the same way

L L
/ EIYVY;dv = / EIY"Y] dx
0 0

Therefore we have:
L
/ EIY]"Y]" + pAw}Y;Yidx = 0 (56)
0
L
/ EIY"Y] + pAw?Y;Y;dz =0 (57)
0

Substracting[(37) from_(56), we have:

/OLpA(wf—wmejdx:o i (58)
so that .
| raviviae =0 iz (59)
and defining
mzzzprnﬂm (60)

(59) and [6D) give the second orthogonality condition.
We can rewrite[(56):

L
/ EIYY] = —pAu}Y;Yidx
0

and taking into accounf (b9) arld{60), we have:
L
/O EBIV/Y/dx =0 i#j

L
| Erantas =i,
0

which is the first orthogonality condition.
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6.1.11 Beam in bending: projection in the modal basis

Starting from the equation of motion

O*y(x,t) O%y(z,t)
oxt ot?

we assume that the solution can be written as a function ahtbae shapes

ET

+pA = p(x,1)

o0
y(a,t) =) Yi(z)z(t)
=1
Plugging into the equation of motion, we have
[e.e] oo
EIY VVz+pAY Vit = pla,t)

i=1 i=1

We multiply byY; and integrate from O td:

L S L et L
/ <EI > Yilvzi> Yjdx + / (,;A > Yz> Yjdr = / p(x,t)Y; da
0 im1 0 0

i=1

and rearranging

L 00 L 00 L
/ <EIZYZ-IVYJ‘> z; dx +/ <pAZYzY]> Zidr = / p(x,t)Y; d
0 0 0

i=1 i=1

the orthogonality conditions are then used to obtain

pizi + piwi 2 = F;

L
Fz:/ p(,t)Y; dx
0

As in the case of the bar in traction, the equation of motidinaissformed into an infinite number of
equations of motions of a single dof. As discussed earliggracation can be performed based on the
frequency band of interest for the computation. Below is\& tb a video showing the first modes of
a cantilever beam.

Cantil ever beam nodes : http://ww. yout ube. com wat ch?v=uBZqa851uvw

6.2 Complex structures

In many cases, the complexity of a structure does not allosvtoruse a beam or bar model in order
to get an accurate model. There exist also solution for ngcdar plates, but this will not be treated
in this course. For more general cases, it is necessary lth dniiapproximation by using numerical
models, the most widely used being the finite element methodhe finite element method, the
structure is divided in elements and contains nodes. Fonerge3D model, there are three unknowns
for each node: the displacement in the 3 directions. Thdatisment field is therefore given by:
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Z uz¢z(x7 Y, Z)
i=1

u(z,y, 2) n
v(x,y, 2) = Z%‘ﬁbz‘(%ya z)
w(z,y, 2) il

Z wz(bz(x’ Y, Z)
=1

whereu, v, w are the displacement in the y andz direction,n is the number of nodes in the model,
¢i(z,y, z) are the shape functions angl v;, w; are the nodal displacements of nadeAn example
of a finite element model of a bridge is presented in Figuré 109

Figure 109: Finite element model of the Pine Creek bridgetidetar truss bridge
(http://fynitesolutions.com)

Another example is given in Figufe 110. The study conceresirteraction of vehicles with
the bridge. Once the finite element has been built, it is ptes$d obtain the stiffness and the mass
matrices. The size of these matrices depends on the numblefbf the structure modeled. For a
structure modeled with 3D elements, the number of unknows ivheren is the number of nodes.
The matriced< andM are therefore @ x 3n matrices. The undamped equations of motion are written
in a matrix form:

Mij+Kq=F

where

U1
U1
w1
U2

\ Wn

is the vector of nodal unknowns. As this expression is igahtio (27), the tools described in sec-
tion[5.1 can be used to solve the system of equations. Basétedi and M/ matrices, the mode
shapes and eigenfrequencies can be computed numericalfgw Anode shapes of the bridge are
represented on Figute111. From that point, the same syratedescribed for mdof systems can be
followed to reduce the system of equations by projecting the modal basis. In general, the number
of dofs in the model is not linked to the necessary accuradysather to the necessity to comply with
the complex geometry. For a bridge excited by wind and tradfemerally, only a few modes (up to
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20 modes) are of interest. The truncation is therefore véigient as it allows to go from several
thousands of dofs to only 10-20 dofs.

Figure 110: Finite element model of a bridge and vehiclesging the bridge [http://www.scielo.br]

a) First vibration mode: fo;=2.90Hz. b) Second vibration mode: fi=3.64Hz.

¢) Third vibration mode: lj3=6.87Hz. d) Fourth vibration mode: fpy3=9.63Hz.

e) Fifth vibration mode: fi5=11.03Hz. ) Sixth vibration mode: fpe=12.85Hz.

Figure 111: A few modes of the bridge presented in Figuré hit@:f/www.scielo.br]
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6.2.1 Modeling of damping

The equations of motion including the damping are written:
Mi+Cq+Kq=F

The matrixC is difficult to obtain. This is because, as we have seen in@e8i4.3, there are various
sources of damping which are not easily quantified. Raylei@mping is often used to build the
damping matrix, but is gives a very poor fit to experimentabdanly two parameters, no physical
meaning). The damping matrix can be constructed using phlysonstitutive laws for the materials
including dissipative effects (viscoelasticity, friatio..). This is rarely done because in practice, a lot
of the damping comes from the joints which are usually regored by a simplified model for which
the damping is unknown. The most common approach is to frtjecequations of motion in the
modal domain and use the modal damping approach. The mouhgginig coefficients can either be
measured on the real structure if it is available, or givem bt value, usually equal ©= 0.01 for
lightly damped structures.

6.2.2 Tuned mass damper attached to continuous structures

Let us take the example of a simply supported beam to which B T\ttached at a distanadrom
the left-hand side (FigufeII12). The TMD is replaced by adqgicand the displacement at this point
is notedy,.

Tuned mass damper

AD_
e,

o4

I
A

v

Figure 112: Simply supported beam equipped with a TMD
The projection on the modal basis leads to an infinite numbegquations of the type:
piZi + pawizi = Ui F (61)

We make the assumption that around the eigenfrequencthe displacement can be approximated
with a single mode:

r= Wiz =iz
j=1
The displacement at the position of the TMD is therefore

y(d) = i(d)
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and we can write

_ y(d)
5T %)
Replacing in[(6lL) and noting that! F = v;(d) f,4, we obtain:
. o2
T+ (@ = fa

which can be written
Mij(d) + Ky(d) = fa

if we define
Hi

M =
¥ (d)
2
Hiw;
K = —/—
¥ (d)

The equation of motion has been reduced to a single dof (asguifmat the displacement can be
approximated by a single mode), and the formulae develap&gctio 5.8 can be used. Figlre 113
shows the example of the displacement in the middle of thenbeecited by a force at the same
location, with and without the TMD. The TMD is efficient to danthe first mode. Note that it is
effective only in a narrow frequency band around the frequda which it has been tuned.

; Without TMD

107 r /
With TMD

tuned on mode 1

-
o
IS
~ -

T Em——

X,/F (dB)

10’ 10° 10

Frequency (Hz)

Figure 113: Displacement in the middle of the beam due to@efat the same location. Effect of the
TMD

The following movie illustrates the efficiency of a TMD to dprthe first mode shape of a can-
tilever beam.

Beam wi th tuned mass danper: http://ww. yout ube. com wat ch?v=f uCdZLQOr Aw
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