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1 Introduction

Vibration refers to mechanical oscillations about an equilibrium point. The oscillations may be peri-
odic such as the motion of a pendulum or random such as the movement of a tire on a gravel road. In
practice, every object is subject to a certain level of vibration, which can often not be seen with the
naked eye. This does not mean that this phenomenon is not important, and it deserves, in many cases,
to be studied. Examples of objects creating vibration in everyday life are a shaver, a vibrator in a cell
phone, a loudspeaker, tools, rotating machines and vehicles in motion such as trains or trams.

1.1 Mechanism of Vibrations

The underlying mechanism of vibrations consists in the transfer of the potential energy into kinetic
energy, and vice versa. Examples of the mass-spring system and the pendulum are illustrated in
Figures 1 and 2.
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Figure 1: Transfer of the potential energy to kinetic energyand vice versa in the mass-spring system
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Figure 2: Transfer of the potential energy to kinetic energyand vice versa in the pendulum
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1.2 Sources of excitations

In order for a body to vibrate, it has to be excited by a source.The sources of excitation can be
divided in two main categories : free vibrations and forced vibrations. Free vibrations correspond to
the case where the vibration is caused by an initial source which is then removed so that the structure
vibrates without any force acting on it. Forced vibrations correspond to the case where an excitation
is permanently applied to the structure.

1.2.1 Free vibration

A free vibration is generally induced by either an external force with a very short duration (shock),
or by an initial displacement or velocity imposed to the structure. The simplest example is the mass-
spring system: when the mass is pulled downwards, an initialdisplacement is imposed (Figure 3a).
Once the mass is released, it starts vibrating freely. In a similar way, hitting a bell for a very short
time makes it vibrate freely. The mechanical vibration is transmitted to the air and a sound is emitted.
(Figure 3b)
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Figure 3: Examples of free vibrations: a) Free response of a mass-spring system due to an initial
displacement b) Free response of a bell due to an initial shock

1.2.2 Forced vibrations

In forced vibrations, we can distinguish between three different types of excitation signals: harmonic,
periodic, and random signals (Figure 4).
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Figure 4: Three different types of forced excitation signals
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Figure 5: Forces generated by the unbalance of a rotating machine

• Harmonic excitation : the force applied to the body is a sineor a cosine function with a given
period T. Rigid rotating machines are an example of source ofharmonic excitation signal: as
the rotor is never perfectly balanced (its center of gravitydoes not correspond to its geometric
center), there exists an inertial force due to the unbalance. This force has a radial direction and
an amplitudemeω2 (m= mass of the spring,e= distance between the center of gravity and the
rotation center,ω = rotational speed, Figure 5) and can be decomposed into a vertical and an
horizontal force varying with the rotation angle. Each of these components is a sine or cosine
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function and is transmitted to the environment through the fixations of the rotating machine.
This excitation is therefore periodic and harmonic.

• Periodic excitation: this corresponds to excitation signals which repeat themselves over time
with a certain period T. As an example, piston engines generate periodic excitation (the period
corresponding to one full rotation of the crankshaft) whichis not made of a single sine or cosine
component (existence of harmonics of the fundamental frequency).

• Random excitation: a random excitation signal has no fundamental frequency and one cannot
distinguish a pattern which repeats itself over time. Examples are the forces generated by wind,
earthquakes (Figure 6), traffic, waves etc.
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Figure 6: Example of excitation signal induced by an earthquake on a building

1.3 Vibration sources in civil engineering

In civil engineering, one can distinguish between internaland external sources of vibrations:

• Internal sources:

– Ventilation systems

– Elevator and conveyance systems

– Fluid pumping equipment

– Machines and generators

– Aerobics and exercise rooms, human activity

• External sources:

– Seismic activity

– Subway, road and rail systems, airplanes

– Construction equipment

– Wind, Waves

Traditionally, vibrations have not been a big concern in civil engineering, except for high levels
of vibrations caused by earthquakes. In recent years however, the sources and levels of excitations
have increased, while at the same time the comfort demands are increasing and health issues are
appearing. In some cases, novel high precision technologies require very low levels of vibrations.
Another important change is the fact that new designs of structures make them more susceptible to
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vibrations. For example, where in the past, bridges where massive structures, they tend to a more and
more slender design aimed at optimising the use of materials(Figure 7). The drawback is that such a
design makes them much more prone to vibrations. The use of novel materials such as composites is
also responsible for a lower level of damping, hence more vibrations.

Figure 7: Evolution in the design of bridges: from massive[http : //www.bridge2faith.net] to
slender structures[https : //fr.wikipedia.org/wiki/V iaduc de Millau]

We detail here below a few examples of structures where vibrations are problematic:

• The Millenium Bridge (Figure 8) in London is a steel suspension bridge for pedestrians cross-
ing the River Thames. During its opening in June 2000, it was subjected to very high levels
of lateral vibrations due to pedestrians walking on the bridge. The bridge was closed until a
solution to the problem could be implemented.

• In cable-stayed bridges(Figure 8), wind excitation can cause excessive levels of vibrations in
the cables. Damping systems are often implemented in order to solve this problem.

• In high-rise buildings, wind excitation can cause an oscillatory motion which is detrimental
for comfort of the inhabitants in the top levels. These structures are also more vulnerable to
earthquake excitation. An example is the Taipei 101 (Figure9) building (509 m) in which a
massive device called ”pendulum tuned mass damper” has beenimplemented. The device is
designed to damp the vibrations due to earthquakes which could impact the structural integrity
of the building.

• The originalTacoma Narrows bridge opened on July 1, 1940 and collapsed into the Puget
Sound in Pierce County, Washington on November 7 1940 (Figure 9). The collapse was due to
high wind conditions which caused excessive vibrations leading to the collapse of the bridge.
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Figure 8: The Millenium bridge[https : //fr.wikipedia.org/wiki/Millennium Bridge (Londres)]
and a cable-stayed bridge (Dongting, China)[http : //sitesavisiter.com/pont − du − lac −
dongting]

Figure 9: The Taipei building [http://blog.artnn.ru] and the original Tacoma Narrows bridge
[http://www.maxisciences.com/construction/pont-de-tacoma-washington-1940art3460.html]

1.4 Positive vs negative effects of vibrations

We have already listed negative aspects of vibrations: excessive levels of vibrations can cause fatigue,
health and comfort issues, degrade the performance of systems and in the most catastrophic case
can lead to collapse. There are however some cases in which vibrations are useful, examples are a
loudspeaker (Figure 10) which requires vibrations to produce sound, an electric toothbrush, a sander,
musical instruments, etc. Another example is the use of high-frequency vibrations in formula one
engines to reduce the friction.
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Vibrating surface

Sound

Figure 10: A loudspeaker uses vibrations of a moving membrane to produce sound

1.5 A first feeling about vibrations through movies and experiments

The reader is suggested to have a look at the following moviesas an introduction to the concepts
which will be developed in the coming chapters. The movies describe what is a simple harmonic
motion, and introduce the concept of resonance.

Simple harmonic motion:
http://www.youtube.com/watch?v=SZ541Luq4nE

Mass spring system (finger excitation):
http://www.youtube.com/watch?v=_XTj_ePLvFI

2 Tools to describe an deal with dynamic signals

2.1 Harmonic signals

A periodic vibration of which the amplitude can be describedby a sinusoidal function:

u(t) = A cos(ωt+ φ)

u(t) = A sin(ωt+ φ)

is called aharmonic vibration with:

• amplitudea

• angular frequencyω = 2πf

• frequencyf

• periodT = 1/f or f = 1/T

• phase angleφ at t = 0

• total phase angleωt+ φ
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Harmonic signals are more conveniently represented in the complex plane. In order to do that,
one writes:

u(t) = aei(ωt+φ) = a cos(ωt+ φ) + i a sin(ωt+ φ)

which can be written:
u(t) = aeiφeiωt = Aeiωt

where
A = aeiφ = a cos(φ) + ia sin(φ)

which introduces the complex amplitudeA which is independent of time (Figure 11). Note that
introducing imaginary numbers is a kind of artefact: there exists no vibration which is imaginary, all
vibration signals are real. The important point to rememberis that the complex amplitudeA carries the
information of both the amplitudea and the phase angleφ and therefore contains all the information
about the harmonic signal.

Re

Im

f

wt

u(t)

A
a

Figure 11: Representation of the harmonic signal as a complex numberA with a phase and amplitude
in the complex plane

The use of the complex notation is particularly useful when one wishes to calculate the first and
second derivatives of a harmonic signal with respect to time:

u(t) = Aeiωt

v(t) =
du(t)

dt
= iωAeiωt = iωu(t)

a(t) =
d v(t)

dt
= −ω2Aeiωt = −ω2u(t)

The displacement, velocity and accelerations are represented in the complex plane in Figure 12. One
can see clearly that the derivation introduces a phase shiftof 90° together with a multiplication of the
amplitude by a factorω. The signals are represented in the time domain for a phase angle ofφ = 0 in
Figure 13.
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Figure 12: Displacement, velocity and acceleration represented in the complex plane
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Figure 13: Displacement, velocity and acceleration represented in the time domain (φ = 0)

2.2 Harmonic analysis: the discrete Fourier transform

Let u(t) be a periodic function of periodT . It can be decomposed into a discrete Fourier series of the
form:

u(t) = a0 +

∞
∑

n=1

[an cos(nω0t) + bn sin(nω0t)] (1)

with

ω0 =
2π

T

12



is the fundamental frequency and

a0 =
1

T

∫ T

0
u(t)dt (2)

an =
2

T

∫ T

0
u(t) cos(nω0t)dt (3)

bn =
2

T

∫ T

0
u(t) sin(nω0t)dt (4)

In other words, a peridic function can be represented by an infinite sum of sine and cosine functions
of discrete frequencies which are multiples of the fundamental frequencyω0 (Figure 14).

t

period T

f(t)

t

T

cos ( t)w0

t

T

cos (2 t)w0

t

T

sin ( )w0t

t

T

sin (2 t)w0

cos (n t)w0 sin (n t)w0

... ...
Figure 14: Fourier decomposition of a periodic signal
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An alternative formulation is given by:

u(t) =
a0
2

+
∞
∑

n=1

[an cos(nω0t) + bn sin(nω0t)] (5)

a0 =
2

T

∫ T

0
u(t)dt

an =
2

T

∫ T

0
u(t) cos(nω0t)dt

bn =
2

T

∫ T

0
u(t) sin(nω0t)dt

2.2.1 Amplitude and phase formulation

Equation (5) can be written in the form of a single cosine function with amplitude an phase as follows:

u(t) = d0 +
∞
∑

n=1

dn cos(nω0t− φn) (6)

where one can show (left as a demonstration) that:

d0 =
a0
2

dn =
√

a2n + b2n

φn = tg−1

(

bn
an

)

2.2.2 Complex formulation

Equation (5) can also be written in a complex form. Using the following trigonometric equalities,

cos(nω0t) =
einω0t + e−inω0t

2

sin(nω0t) =
einω0t − e−inω0t

2i

one gets:

u(t) =
a0
2

+

∞
∑

n=1

[

an
einω0t + e−inω0t

2
+ bn

einω0t − e−inω0t

2i

]

u(t) =
a0
2

+

∞
∑

n=1

[

an − ibn
2

einω0t +
an + ibn

2
e−inω0t

]

which can also be written

u(t) =

n=∞
∑

n=−∞

cne
inω0t

14



with

c0 =
a0
2

cn =
an − ibn

2

c−n =
an + ibn

2

Subsitutinga0, an andbn using (2-4), we get:

c0 =
a0
2

=
1

T

∫ T

0
u(t)dt

cn =
an − ibn

2
=

1

T

∫ T

0
u(t) (cos(nω0t)− i sin(nω0t)) dt =

1

T

∫ T

0
u(t)e−inω0tdt

c−n =
an + ibn

2
=

1

T

∫ T

0
u(t) (cos(nω0t) + i sin(nω0t)) dt =

1

T

∫ T

0
u(t)einω0tdt

so that we can finally write:

u(t) =

n=∞
∑

n=−∞

cne
inω0t (7)

with

c0 =
1

T

∫ T

0
u(t)dt

cn =
1

T

∫ T

0
u(t)e−inω0tdt

Note thatcn is complex and carries the phase and amplitude information of thenth component of
the Fourier transform. This can easily be shown knowing that:

cn =
an − ibn

2

dn =
√

a2n + b2n

φn = tg−1

(

bn
an

)

wheredn andφn are the phase and amplitudes of thenth component of the Fourier transform. Note
also thatcn andc−n are complex conjugate so thatu(t) is always real. The complex formulation can
also be written in the following form where the integrals aretaken from−T/2 to T/2 instead of from
0 to T :

u(t) =

n=∞
∑

n=−∞

cne
inω0t

c0 =
1

T

∫ T

2

−T

2

u(t)dt

cn =
1

T

∫ T

2

−T

2

u(t)e−inω0tdt
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2.2.3 Examples of Fourier transforms of periodic signals

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

1

T/2T/2

1

1

d10 d20 d30 d40 d50

Main frequency
band of signal

Time signal
Amplitude of Fourier

coefficients

T/2T/2

T/2T/2

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

Figure 15: Examples of Fourier transforms of periodic signals: amplitudes of the Fourier components

Figure 15 shows three examples of periodic signals togetherwith their respective discrete Fourier
transforms. Only the amplitudesdn of the Fourier components are represented. In the first two exam-
ples, the function has only one and three Fourier components. The third example is more complex.
All the values ofdn are non-zero, but there is a specific frequency band in which they are very large.
Outside of this frequency band, the Fourier components can be considered as negligible. This example
shows the interest of the transformation in the frequency domain using the discrete Fourier transform:
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if one wishes to compute the response of a structure to an excitation signal of that type, it should be
performed only in the main frequency band where the excitation signal has large Fourier components.

2.3 The continuous Fourier transform

When the function u(t) is not periodic, the discrete Fouriertransform cannot be applied. Instead,
the continuous Fourier transform should be used. It can be obtained from the discrete transform
considering that the periodT of the signal tends to infinity. In this case, the discrete frequenciesnω0

used in the discrete transform tend to a continuous variableω. The frequency spacing∆ω = ω0 tends
to dω (Figure 16):

limT→∞ ω0 = limT→∞∆ω = dω

limT→∞ nω0 = ω

-T/2 -T/2 w0 2w0 3w0 4w0 ...

Dw p=2 /T

Time signal Discrete Fourier transform

Continuous Fourier transform

w

1T -> Dw -> wd

Figure 16: From the discrete Fourier transform to the continuous Fourier transform

Recalling the definition ofcn (8), we compute:

limT→∞ Tcn = limT→∞

∫ T

2

−T

2

u(t)e−inω0tdt =

∫ ∞

−∞
u(t)e−iωtdt = U(ω)

U(ω) is a continuous fonction of the variableω and is the continuous Fourier transform ofu(t). We

17



can now rewriteu(t):

u(t) = limT→∞

n=∞
∑

n=−∞

cne
inω0t = limT→∞

n=∞
∑

n=−∞

cn
T

T
einω0t

= limT→∞

n=∞
∑

n=−∞

(cnT )
ω0

2π
einω0t =

1

2π

∫ ∞

−∞
U(ω)eiωtdω

which is the inverse continuous Fourier transform. Note that an alternative formulation consists in
writing the Fourier transform as a function off instead ofω. In this case, we have:

ω = 2πf ⇒ dω = 2πdf

U(f) =

∫ ∞

−∞
u(t)e−i2πftdt

u(t) =

∫ ∞

−∞
U(f)ei2πftdf

where one sees that the factor1/2π is not present anymore.

2.3.1 Examples of continuous Fourier transforms and properties

Table 1 and Figure 17 give a few examples of continuous Fourier transforms, while Table 2 gives some
properties of the continuous Fourier transforms. These properties will be used in the demonstration
of Parseval’s theorem in section 2.4.

u(t) U(f)

1 δ(f)
δ(t) 1

cos(2πf0t)
δ(f − f0) + δ(f + f0)

2

sin(2πf0t)
δ(f − f0) + δ(f + f0)

2i
n=∞
∑

n=−∞

δ(t− nT )
1

T

n=∞
∑

n=−∞

δ(f − n

T
)

Table 1: Examples of continuous Fourier transforms

18



Time domain function Frequency domain function Property

a f(t) + b g(t) aF (f) + bG(f) Linearity

f(kt)
1

|k|F
(

f

k

)

Time Scaling

1

k
f

(

t

k

)

F (kf) Frequency scaling

f(t− t0) e−i2πft0F (f) Time shifting
f(t) ei2πf0t F (f − f0) Frequency shifting

f(t) real even function F (f) real even function
f(t) real odd function F (f) imag odd function

f(t) real F (−f) = F (f)∗

Table 2: Properties of the continuous Fourier transform

t w

w

w

w

t

t

t

f(t) F( )w

F( )w

F( )w

F( )w

f(t)

f(t)

f(t)

1

1

T 1/T

f0-f0

1/f0

Figure 17: Examples of continuous Fourier transforms

In the following, we calculate the continuous Fourier transform of a cosine function, of a ’box’
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function and a triangular function. Consider the functionu(t) = cos(2πf0t). Its Fourier transform is
given by:

U(f) =

∫ ∞

−∞
cos(2πf0t)e

−i2πft dt

=

∫ ∞

−∞

1

2

(

ei2πf0t + e−i2πf0t
)

e−i2πft dt

=
1

2

∫ ∞

−∞
e−i2π(f−f0)t dt+

1

2

∫ ∞

−∞
e−i2π(f+f0)t dt

=
1

2
δ(f − f0) +

1

2
δ(f + f0)

where we have used the definition of theδ(x) function :

δ(x) =

∫ ∞

−∞
e−2iπkx dk

Consider now the box function represented in Figure 18 whichis defined using the Heaviside step
functionH(x):
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Figure 18: Box function of width2a

u(t) = H(t+ a)−H(t− a) =

{

1 −a < t < 0
0 |t| > a

The continuous Fourier transform is:

U(f) =

∫ ∞

−∞
u(t)e−i2πft dt =

∫ a

−a
e−i2πft dt =

−1

i2πf

[

e−i2πft
]a

−a

=
(ei2πfa − e−i2πfa)

2iπf
=

2 sin(2πfa)

2πf

Using the definition of thesinc function:

sinc(x) =
sin(πx)

πx

we get
U(f) = 2asinc(2fa)
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Thesinc function is represented on Figure 19.
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Figure 19: Thesinc function

The effect of the widtha of the box is illustrated on Figure 20: as the width is dividedby a factor
of 5, the value ofU(0) is divided by 5 (U(0) corresponds to the integral ofu(t), here the area of the
box), and the first lobe of thesinc function goes to zero for a value of 5 instead of 1. In order to see
the effect of the width of the box for functions having the same ”energy”, we consider now three box
functions of different widths, where the surface of the box is equal in Figure 21. The term ”energy”
is used here to refer to the case whereu(t) is an impulse input force of duration∆t and amplitude
F , of which the energy isF∆t. For the same energy, we see that as the width of the box is smaller
and smaller (i.e. the impact of the force is of shorter duration), the first lobe of thesinc function is
wider and wider so that the continuous Fourier transform tends to a constant in the frequency band
considered in the graph. This illustrates the fact that in order to excite a wide band of frequencies with
high amplitudes, the duration of the impact force must be as short as possible.
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Figure 20: Effect of the widtha of the box on the continuous Fourier transform
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Figure 21: Effect of the widtha of the box on the continuous Fourier transform for impulse functions
having the same ”energy”

We now consider a triangle functionu(t) as represented in Figure 22:

u(t) =

{

a− |t| −a < t < a
0 |t| > a

and compute its continuous Fourier transform

U(f) =

∫ ∞

−∞
u(t)e−i2πft dt

=

∫ 0

−a
(a+ t)e−i2πft dt+

∫ a

0
(a− t)e−i2πft dt

The first term of the sum is:

∫ 0

−a
(a+ t)e−i2πft dt =

[

(a+ t)e−2πift

−2πif

]0

−a

−
∫ 0

−a

e−2πift

−2iπf
dt

=

[

(a+ t)e−2πift

−2πif

]0

−a

−
[

e−2iπft

4i2π2f2

]0

−a

and the second term gives

∫ a

0
(a− t)e−i2πft dt =

[

(a− t)e−2πift

−2πif

]a

0

+

[

e−2iπft

4i2π2f2

]a

0

and finally the Fourier transform of the triangle function is:

U(f) =
2

4π2f2
− e2iπfa

4π2f2
− e−2iπfa

4π2f2
=

−e−2iπfa

4π2f2

(

1− 2e2iπfa + e4iπfa
)

=
−e−2iπfa

4π2f2

(

e2iπfa − 1
)2

=
−e−2iπfa

4π2f2
e2iπfa

(

eiπfa − e−iπfa
)2

=
−1

4π2f2
(2i)2

(

sin2(πfa)
)

=
sin2(πfa)

π2f2
= a2sinc2(fa)
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Figure 22: Triangle function of width2a

The continuous Fourier transform of a triangle function is compared to the Fourier transform of a
box function in Figure 23 for a width ofa = 0.5. The value ofU(0) for the triangle is 1/2 the value
for the box function (the area of the triangle is 1/2 the area of the box), and the first lobe goes to zero
for a value of 2 for the triangle and 1 for the box function. Forthe same duration of impact, one can
expect therefore that the triangle function excites a widerfrequency band than the box function.

- 0 .2

- 0 .1

0

0 .1

0 .2

0 .3

0 .4

0 .5

Rectangular a=0.5

Triangle a=0.5

f

U(f)

1 2

Figure 23: Comparison ofU(f) for the triangle and the box function (a = 0.5)

2.4 The convolution integral and the theorem of Parseval

2.4.1 The convolution integral

The convolution integral of two time functionsx(t) andh(t) yields a new time functiony(t)
defined as:

y(t) =

∫ ∞

−∞
x(τ)h(t− τ)dτ

y(t) = x(t) ∗ h(t)

The following steps help understand how the convolution of two functions yields a new function:
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• Take the two functionsx(t) andh(t) and replace t by the dummy variableτ

• Mirror the functionh(τ) against the ordinate, this yieldsh(−τ)

• Shift the functionh(−τ) with a quantityt

• Determine for each value oft the product ofx(τ) with h(t− τ)

• Compute the integral of the producty(t)

• Let t vary from−∞ (or a value small enough to make the product zero) to+∞ (or a value oft
that is big enough)

Let us illustrate these different steps with an example. We consider the box functionx(t) which has
a unit value fromt = 0 to t = 1, and the box functionh(t) which has a value of 1/2 fromt = 0 to
t = 1 (Figure 24).

1

1/2

1

x(t)

1 1t t

h(t)

Figure 24: Box functionsx(t) andh(t)

We replace variablet by τ and mirror theh(τ) function (Figure 25).

1

1/2

1

x( )tx( )t h(- )t

1 -1t t

Figure 25:x(τ) andh(−τ)

We then shift the functionh(−τ) with a quantityt (Figure 26).

1/2

h(t- )t

tt

Figure 26: h(t− τ)
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For each value oft, we compute the product ofx(τ) with h(t− τ) and compute the integral. The
resulting function is a triangle function as shown in Figure27.

y(t)

tt1 2t1 3t1 4t1 5t1-t1 0

1/2

x( )t

t
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x( )t

t

h(t - )1 t

x( )t

t

h(2t - )1 t
x( )t

h(3t - )1 t

x( )t
h(4t - )1 t

x( )t
h(5t - )1 t

t =1/21

Figure 27: h(t− τ)

Due to the definition of the convolution integral, one can easily show the following property:

y(t) =

∫ ∞

−∞
x(τ)h(t − τ)dτ =

∫ ∞

−∞
x(t− τ)h(τ)dτ

Another interesting property is given by the convolution theorem which states that :

Convolution in the time domain corresponds with a multiplication in the frequency domain:

y(t) = x(t) ∗ h(t)
Y (f) = X(f).H(f)

Proof:

Y (f) =

∫ ∞

−∞
y(t)e−i2πftdt =

∫ ∞

−∞

[
∫ ∞

−∞
x(t− τ)h(τ)dτ

]

e−i2πftdt

=

∫ ∞

−∞
h(τ)

[∫ ∞

−∞
x(t− τ)e−i2πftdt

]

dτ

Make the change of variables :u = t− τ ⇒ du = dt

Y (f) =

∫ ∞

−∞
h(τ)

[
∫ ∞

−∞
x(u)e−i2πf(u+τ)du

]

dτ

=

∫ ∞

−∞
h(τ)e−i2πfτdτ

[∫ ∞

−∞
x(u)e−i2πfudu

]

= H(f).X(f)

In the same way, one can prove that a convolution in the frequency domain corresponds to a multipli-
cation in the time domain:

Y (f) = X(f) ∗H(f)

y(t) = x(t).h(t)
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2.4.2 The theorem of Parseval

The energy of a signal computed in the time domain is equal to the energy computed in the
frequency domain :

∫ ∞

−∞
h2(t)dt =

∫ ∞

−∞
|H(f)|2df

Proof:

∫ ∞

−∞
h2(t)dt =

∫ ∞

−∞

[∫ ∞

−∞
H(f)ei2πftdf

] [∫ ∞

−∞
H(f ′)ei2πf

′tdf ′
]

dt

=

∫ ∞

−∞

∫ ∞

−∞
H(f).H(f ′)

∫ ∞

−∞
ei2π(f+f ′)tdtdf ′df

=

∫ ∞

−∞

∫ ∞

−∞
H(f).H(f ′)

∫ ∞

−∞
1 ei2π(f+2f ′)te−i2π(f ′)tdtdf ′df

The term
∫ ∞

−∞
1 ei2π(f+2f ′)te−i2π(f ′)tdt

is the Fourier transform of
1 ei2π(f+2f ′)t = f(t) ei2π(f+2f ′)t

if we takef(t)=1. Knowing that the Fourier transform off(t)e2iπf0t is equal toF (f − f0) (see
Table 2), and that the Fourier transform of1 is δ(f) (Table 1), we have

∫ ∞

−∞
1 ei2π(f+2f ′)te−i2π(f ′)tdt = δ(f ′ − (f + 2f ′)) = δ(−f − f ′)

and
∫ ∞

−∞
h2(t)dt =

∫ ∞

−∞

∫ ∞

−∞
H(f).H(f ′)δ(−f − f ′)df ′df =

∫ ∞

−∞
H(f).H(−f)df

In addition, we know that h(t) is real so that we have (Table 2)

H(−f) = H∗(f)

and finally

=

∫ ∞

−∞
H(f).H∗(f)df =

∫ ∞

−∞
|H(f)|2df

The theorem of Parseval can also be written using the variableω = 2πf :
∫ ∞

−∞
h2(t)dt =

∫ ∞

−∞
|H(f)|2df =

1

2π

∫ ∞

−∞
|H(ω)|2dω
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3 Single degree of freedom system

The study of the single degree of freedom (dof) system is the foundation of structural dynamics. Such
a system is represented by a mass attached to the ground with aspring. One may argue that such
a system is not of practical importance, as buildings are nota large mass attached to the ground by
a spring. While this is true, we will see in the next chapters that the theory of the single degree of
freedom system can be used to study the dynamic behavior of all structures, once the concept of mode
shapes is understood (Section 5.1). There are also cases forwhich the structure can be simplified to
the extent that it corresponds to a single dof system. This isthe subject of the next section.

3.1 One degree of freedom systems in real life

The simplification of the model of a real structure to a one dofsystem requires to assume the existence
of a rigid body, whose motion due to an excitation source is ina single direction. This body needs
to be attached to a motionless reference through a flexible element whose dynamical behavior can be
neglected and acts like a spring. In practice, all the bodies, when subjected to a force, tend to deform,
but one can consider that when this deformation is small, thebody can be considered as rigid. On the
contrary, if the body is deformed by the application of a force, it is considered as flexible (Figure 28).
Note that the flexibility of the body will generally depend onthe direction of the applied force.

F

Rigid body

F

Flexible body

Figure 28: Rigid body / flexible body

This classification is however not as clear as it may appear. When the force applied to the body is
dynamic, the deformation of the body depends also on the frequency at which it is excited. In order
to illustrate this, let us consider the example of a one storybuilding. In the first case, the building is
excited by a ground motion due to an earthquake. The excitation frequency of the earthquake is rather
low (typically below 20 Hz), and the floor is quite rigid when excited laterally. On the other hand, the
columns, when excited at their tip, are very flexible. In thiscase, the floor can be regarded as a rigid
body, and the columns act as a spring element attaching the large mass of the floor to a fixed reference
(the ground, Figure 29)
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Rigid floor

Figure 29: One story Building excited by an earthquake

In the second case, if the building is excited by a rotating machine (such as a power generator)
which is in the middle of the floor (Figure 30) , the frequency of excitation is much higher and can
reach several hundreds of Hertz. The excitation of the rotating machine acts both in the vertical and
in the horizontal direction. The horizontal direction corresponds to the case previously studied. For
the vertical direction however, the columns have a much higher stiffness in that direction, and can be
considered as rigid supports of the floor which is now excitedin bending, a direction in which it is
much more flexible. The system can therefore be modeled by a beam on its supports which is excited
in the middle by a vertical force. In such a case, it is not straightforward to simplify the system to a
one dof system (we will see however in section 6 how this can bedone).

Flexible floor

Rigid columns

Rotating machine

Rotating machine

Rigid columnsFlexible floor

Figure 30: One story building excited by a rotating machine

The first example shows how a real-life system can, in some cases, be simplified to a one dof
system. In the second example, such a simplification is not asstraightforward. Note also that elements
which are considered flexible in the first case, are considered rigid in the second case, and vice versa,
the only difference being the direction of the excitation.
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Figure 31 represents a series of systems which can be modeledwith an equivalent one dof system.
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Figure 31: Examples of equivalent one dof systems
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3.2 Response of a single degree of freedom system without damping

Let us consider a mass-spring system without damping, represented in Figure 32. The first law of
Newton applied to this system gives:

mẍ =
∑

Fx (8)

where
∑

Fx is the sum of forces action on massm in directionx:

• Spring force: −kx , wherek is the stiffness of the spring. Note that the positionx = 0
corresponds to the static equilibrium of the hanging mass attached to the spring. As the equation
of motion is written with respect to this reference position, the force of gravity must not be
considered in the equilibrium of forces: it is in equilibrium with the spring forcek∆l in the
static equilibrium position (Fiugre 33)

• External forcef acting on the mass. It is the force which causes the mass to move, it is called
the ”excitation force”.

Putting all the terms dependent onx on the left hand side, we get the equation of motion of the 1 dof
system:

mẍ+ kx = f (9)

k

m

f

m

f

x

kx

x=0

Figure 32: Forces acting on a one dof mass-spring system

k

m m
x=0

l0 l + l0 D

mg

k lD

Figure 33: Definition of the reference positionx = 0 of the mass for the mass-spring system
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3.2.1 General solution of the equation of motion

The characteristics equation of (9) is obtained assumingx = Aert which leads to:

mr2 + k = 0 (10)

The roots of this equation are purely imaginary:

r = ±i
√

k/m

The general solution can therefore be written in the form of :

x = A cos ωnt+B sinωnt

where
ωn =

√

k/m

is the natural angular frequency. In the absence of externalexcitation force, the motion is oscillatory
with a frequencyf = 1

2π

√

k/m which is defined by the values of k and m.The motion is initialized
by imposing initial conditions on the displacementx0 and on the velocitẏx0. In this case, the motion
is given by:

x(t) = x0 cosωnt+
ẋ0
ωn

sinωnt

Figure 34 illustrates the vibration of a one dof system to which an initial displacementx0 with a zero
initial velocity ẋ0 are imposed.

k

mx
x0

x0

t

Figure 34: Free vibration of a 1 dof system to which an initialdisplacementx0 is imposed

The solution can also be written in the general form of a cosine with amplitudea and a phaseφ:

x(t) = a cos (ωnt+ φ)

where we have:

x0 = a cosφ

ẋ0/ωn = a sinφ

which leads to:

tan φ =
ẋ0
ωnx0

The phaseφ is a function of bothx0 andẋ0. It is equal to zero wheṅx0 = 0 and equal to90◦ when
x0 = 0.
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3.2.2 Particular solution

Consider the continuous inverse Fourier transform of the excitation forcef(t):

f(t) =
1

2π

∫ ∞

−∞
F (ω)e−iωtdω

and isolate a single component at frequencyω:

F (ω)e−iωt = F (ω) cos(ωt) + iF (ω) sin(ωt)

Let us first consider an excitation of the formF (ω) cos(ωt). The equilibrium equation is written:

mẍ+ kx = F cosωt (11)

and the particular solution can be written in the general form

x(t) = A cos ωt+B sinωt = a cos(ωt+ φ)

If we now consider an excitation of the formF (ω) sin(ωt), the form of the general solution is

x(t) = a sin(ωt+ φ)

Therefore the general solution to an excitationF (ω)eiωt is

x(t) = a cos(ωt+ φ) + i sin(ωt+ φ) = aei(ωt+φ) = Xeiωt

whereX = aeiφ is a complex number carrying the information of both the phase and the amplitude
of the response at frequencyω (Figure 35)

a
f

xr

xi

Real

Imag

X

Figure 35: Representation of the complex amplitudeX in the complex plane

Replacingx(t) = X eiωt andf(t) = F eiωt in (9), we get

(

k − ω2m
)

Xeiωt = Feiωt

which can be solved forX:

X =
F

k − ω2m

Let us defineX0, the amplitude of the static displacement of the mass (ω = 0) :

X0 = F/k

The solution can then be expressed as:

X

X0
=

1

1− ω2/ω2
n

(12)
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where we have used the fact thatωn =
√

k/m is the natural angular frequency of the system. For
an undamped system, the value ofX/X0 is always real. It is positive whenω < ωn. This means
that when the excitation frequency is lower than the naturalangular frequency of the system, the
displacementX is in phase with the excitation force (φ = 0◦). When the excitation frequency is
equal to the natural angular frequency of the system, the amplitude tends to infinity. In practice, the
displacement can never reach infinity as there is always a small amount of dissipation which is not
considered here. When the excitation frequency is higher than the natural angular frequency of the
system, the displacement is in opposition of phase with respect to the excitation (φ = 180◦): the mass
will have an upward motion when the force applied is downwards. The value ofX/X0 as a function
of the excitation frequency is plotted in Figure 36. Such a plot is called a Bode diagram.
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Figure 36: Amplitude ofX/X0 as a function of the excitation frequency (Bode diagram)

Note that in structural dynamics, it is usual to represent the Bode diagram containing both the
amplitude and the phase with a linear frequency axis and a logarithmic scale for the amplitudes, while
in the domain of control and automatics, a logarithmic scaleis often used for the frequencies, and a
scale in decibels (dB) (also logarithmic) is used for the amplitudes. When using a log-log scale, the
Bode diagram of a second order system such as a mass-spring system has a slope of -40 dB/decade
after resonance (Figure 37)

If one wishes to compute the responsex(t) in the time domain, it can be done using the inverse
continuous Fourier transform given by:

x(t) =
1

2π

∫ ∞

−∞
X(ω)e−iωtdω

where

X(ω) =
F (ω)

k − ω2m
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Figure 37: Bode diagram of a mass-spring system using a logarithmic scale for both the frequencies
and the amplitudes

The Bode diagram is a very useful tool. It allows to clearly point out the resonance of dynamic
systems. In the case of a 1 dof system, one sees clearly that the frequencies close to the resonant fre-
quency are strongly amplified while the frequencies away from the resonant frequency are diminished.
The 1 dof system can therefore be seen as a mechanical filter.
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Figure 38: Illustration of the resonance : the one dof systemacts as a mechanical filter which enhances
the frequency components close to the natural frequency of the system

This is illustrated in Figure 38 where we consider a periodicexcitation forcef(t) whose discrete
Fourier transform is computed, showing the relative amplitudes of the different components. The
discrete Fourier transform is then applied to the outputx(t) of the system. One sees clearly that the
relative amplitudes of the different components have changed: the amplitudes close to resonance are
much higher than the other components. Resonance can be usedto induce very large displacements
in a system. The entertaining exercise of breaking a wine glass with the voice is one example: if one
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emits a sounds whose frequency is close to one of the natural frequencies of the glass, the effect can
be strong enough to break it. The reader can see a demonstration in the following videos:

http://www.youtube.com/watch?v=10lWpHyN0Ok
http://www.youtube.com/watch?v=JiM6AtNLXX4

3.3 Response of a single degree of freedom system with damping

Equation (9) represents a conservative system in which there is an exchange between the kinetic and
potential energy without dissipation of energy. In reality, there is always a certain amount of energy
dissipated somewhere in the system, which is responsible for a certain amount of damping. For mass-
spring systems, the most common form of damping adopted is the viscous damping, represented by
a dashpot element. In the equation of motion, an additional force due to the dashpot is added in the
following form:

Fb = −bẋ
The equation of motion is given by (Figure 39) :

mẍ+ bẋ+ kx = f (13)

In order to simplify the notations, equation (13) can be rewritten by dividing it bym and introducing
the damping coefficientξ = b/(2

√
km):

ẍ+ 2ξωnẋ+ ω2
nx = f/m (14)

k

m

f

m

f

x

kx

x=0

b
bx

Figure 39: Forces acting on a one dof mass-spring-dashpot system

3.3.1 General solution of the equation of motion

The characteristics equation is given by:

r2 + 2ξωnr + ω2
n = 0

In most structures, the damping coefficientξ is smaller than one. In this case, the roots of the charac-
teristics equations are given by:

r = −ξωn ± iωn

√

1− ξ2

or
r = −ξωn ± iωd
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with
wd = ωn

√

1− ξ2

The general solution can be written in the form of:

x(t) = e−ξωnt (A cosωdt+B sinωdt)

In the absence of external forces, the system will vibrate due to initial conditions on the displacement
x0 and the velocityẋ0. The free vibration is given by:

x(t) = e−ξωnt

(

x0 cosωdt+
ẋ0 + ωnξx0

ωd
sinωdt

)

(15)

The system will oscillate at a frequencyωd which is different from the natural frequencyωn, and the
motion will decrease with time due to the exponential terme−ξωnt which is a function of the damping
coefficientξ and the natural frequency of the systemωn. The free response is represented for different
values ofξ in Figure 40.
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Figure 40: Free vibration of a one dof mass-spring-dashpot system due to an initial unit displacement
x0 = 1 as a function of the damping coefficientξ

When ξ = 0, the mass oscillates with a constant amplitude. As the damping increases, the
amplitude decreases faster with time. For a value ofξ = 0.01, the amplitude is divided by 2 after
about 10 oscillations. On Figure 41, we represent the numbern of oscillations needed to decrease
the amplitude by one half as a function ofξ, in a log-log scale. The figure shows clearly that as the
damping coefficient is divided by 10, 10 times more oscillations are needed to reduce the amplitude by
one half. The time needed for the motion of the mass to be reduced by one half is a function ofξ and
the natural frequencyωn: the higherωn, the shorter this time will be. For a system with a low natural
frequency and a low level of damping, a very long time will be needed to attenuate the vibration.
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Figure 41: Numbern of oscillations needed to reduce the vibration amplitude byone half as a function
of the damping coefficientξ

When the damping coefficient is very high (ξ > 1), the solution of the equation of motion is:

x(t) = e−ξωnt

(

x0 cosh µt+
ẋ0 + ωnξx0

µ
sinhµt

)

with
µ = ωn

√

ξ2 − 1

This solution is not oscillatory. The higher the damping, the slower the response decreases because of
thecosh andsinh terms which grow with time. For a limit value ofξ = ∞, the mass is blocked by the
damper in the initial position (x(t) = x0, Figure 42). The valueξ = 1 represents the limit between
the oscillatory motion and the non-oscillatory motion. This value is called the critical damping. The
roots of the characteristics equation are double and given by:

r = −ωn

The solution is given by:
x(t) = e−ωnt ((ẋ0 + ωnx0) t+ x0)

It is represented on Figure 42. Note that the critical damping corresponds to the value of damping for
which the motion of the mass is the fastest to reach a zero value.
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Figure 42: Response of a one dof mass-spring-dashpot systemto an initial unit displacement (x0 = 1)
for high values of damping coefficientsξ
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3.3.2 The impulse response

An impulse excitation is defined as a force of amplitudeF applied during a short time∆t. The energy
of the impulse is given byF∆t (Figure 43). Let us consider the equation of motion (13) withinitial
conditionsx0 = 0 andẋ0 = 0 and integrate it fromt = 0 to t = ∆t:

mẋ0|∆t = F∆t−
∫ ∆t

0
kxdt−

∫ ∆t

0
bẋdt

As the initial conditions arex0 = 0 and ẋ0 = 0 and the time interval∆t is very short, the last two
terms tend to zero, we get:

ẋ0|∆t =
F∆t

m

which shows that in order to compute the response of a system to an impulseF∆t, one has to compute
the response to an imposed velocityF∆t/m at timet = ∆t. The impulse response of the system is
defined as the response to a unit value ofF∆t. Using (15), the impulse response is given by:

x(t) =
e−ξωnt

mωd
sin(ωdt) (16)

F

tDt

Impulse=F tD

Figure 43: Definition of an impulse excitation

3.3.3 Particular solution of the equation of motion

In a similar way to what was done for the undamped system, we assumef(t) = Feiωt andx(t) =
Xeiωt and replace in (14) to get:

(ω2
n + 2iξωωn − ω2)X = F/m

The complex amplitudeX is given by:

X =
F

m

(

1

ω2
n + 2iξωωn − ω2

)

=
F

k

(

1

1− ω2

ω2
n

+ 2iξ ω
ωn

)

= X0

(

1

1− ω2

ω2
n

+ 2iξ ω
ωn

)

The real and imaginary parts ofX are given by:
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Xr = X0

1− ω2

ω2
n

(

1− ω2

ω2
n

)2
+
(

2ξ ω
ωn

)2

Xi = X0

−2ξ ω
ωn

(

1− ω2

ω2
n

)2
+
(

2ξ ω
ωn

)2

and the amplitude and phase ofX/X0 are given by:

|X/X0| =

√

√

√

√

1
(

1− ω2

ω2
n

)2
+
(

2ξ ω
ωn

)2

tan φ =
−2ξ ω

ωn

1− ω2

ω2
n

The Bode diagram (amplitude and phase) ofX/X0 is represented in Figure 44 for different values of
ξ.
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Figure 44: Bode diagram for the one dof mass-spring-dashpotsystem. Influence of the damping
coefficientξ

The influence ofξ is as follows: asξ is increased, the amplitude of the peak is reduced and the
phase transition from0◦ to 180◦ around the resonance is smoother. At the resonant frequency, the
phase is always equal to90◦. The frequency at which the amplitude is maximum is slightlydifferent
from ωn andωd:

ω/ωn =
√

1− 2ξ2
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The maximum amplitude is given by

|X/X0| =
1

2ξ
√

1− ξ2

For small values ofξ, we have however:

ω/ωn = 1

|X/X0| =
1

2ξ

Up to now we have represented the displacementx(t) = Xeiωt in the Bode diagram. The velocity

v(t) = d(x(t)
dt = iωX, and the accelerationa(t) = d2(x(t)

dt = −ω2X are represented and compared to
the displacement in Figure 45. Note the change of slope before and after the resonance frequency due
to the multiplication by a factoriω and−ω2 respectively.
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Figure 45: Bode diagram for the one dof mass-spring-dashpotsystem: displacementX, velocityjωX
and acceleration−ω2X

An alternative way to represent the responseX/X0 as a function of the frequency is the Nyquist
diagram in which the real and imaginary parts are plotted in the complex plane (Figure 46). For a 1
dof system, the Nyquist plot is close to a circle with a diameter = 1/2ξ. The Nyquist plot makes a
zoom around the natural frequency of the system: frequencies close to the natural frequency spread
along the circle in the Nyquist plot.
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Figure 46: Nyquist plot for the one dof mass-spring-dashpotsystem for different values of dampingξ

3.3.4 Duhamel’s integral

Consider a 1 dof system excited by an arbitrary forcef(t) (Figure 47). f(t) is decomposed into a
series of short impulses at timeτ . The contribution of one impulsef(τ)dτ to the response of the
system is given by :

f(τ)dτh(t− τ)

whereh(t) is the impulse response. The total contribution is therefore:

x(t) =

∫ t

0
f(τ)h(t− τ)dτ

knowing thatf(t) = 0 andh(t) = 0 for t > 0 we have:

x(t) =

∫ ∞

−∞
f(τ)h(t− τ)dτ = f(t) ∗ h(t)

t

f(t)

dt

t

f( )t

Figure 47: Decomposition off(t) in a series of short pulses at timesτ
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In the particular case wheref(t) = Feiωt, we have:

x(t) = Xeiωt =

∫ ∞

−∞
Feiωth(t− τ)dτ =

∫ ∞

−∞
Feiω(t−τ)h(τ)dτ

= Feiωt
∫ ∞

−∞
h(τ)e−iωτdτ = FeiωtH(ω)

which can be rewritten:

H(ω) =
X

F

showing that the continuous Fourier transform of the impulse responseh(t) is the ratioX/F which is
the transfer function of the one dof system.

3.3.5 Base excitation

In some cases, the excitation is not in the form of an applied forcef(t). An example is the excitation
of an earthquake which imposes a displacement of the base of the buildings. Let us consider the
mass-spring-dashpot system to which a base displacementx0(t) is imposed (Figure 48).

k

m m

x0

k(x-x )0

x=0

b

x0

x

b(x-x )0

x =00

Figure 48: Forces acting on a 1 dof system excited by the base

The equilibrium of forces is written

mẍ = −k(x− x0) + b(ẋ− ẋ0)

the equation can be rewritten as a function of the relative displacement of massm with respect to the
basexr = x− x0:

mẍr + bẋr + kxr = −mẍ0 (17)

This equation corresponds to the equation of motion of a one dof mass-spring-system where the
displacement is the relative displacementxr and the excitationf(t) = −mẍ0 is a function of the
imposed acceleration at the base and the massm. The response can therefore be computed using the
tools described in the previous sections.

3.4 Reduction to a one dof system

With some assumptions, the systems represented in Figure 31can be reduced to a single dof mass-
spring system. If one wishes to take into account the dissipation, a dashpot must be added. There are
thus three parameters which need to be known when representing a real structure with an equivalent
single dof mass-spring-dashpot system:
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• The equivalent stiffnessk

• The equivalent massm

• The equivalent viscous damping coefficientb

One should always keep in mind that the equivalent single dofsystem is a simplification of the reality,
and that it is valid only in a certain frequency range. This will be discussed in more details in sec-
tion 3.4.4. With the help of simple examples, we illustrate the methodology to compute the equivalent
stiffness, mass and damping parameters of a system.

3.4.1 Equivalent stiffness

The most general method to compute the equivalent stiffnessof the flexible element of the system
consists in applying a force of amplitudeF in the direction of motion, and computing the resulting
displacementx in the same direction. The equivalent stiffness is given byk = F/x (Figure 49).

m m

Flexible
body

S

x

F

k=F/x

Direction
of motion S

Figure 49: Principle to compute the equivalent stiffnessk of a flexible bodyS

In the following, this methodology is applied to simple flexible bodies, for which analytical solu-
tions can be computed.

Bar in traction
For a bar in traction (Figure 50), the constitutive equationis given by:

N = EA
du

dx

whereE is the Young’s modulus, A the area of the section andu(x) the axial displacement (in direc-
tion x). For a bar in pure traction, the normal forceN is constant and equal toF so that the general
form of u(x) is

u(x) =
F

EA
x+ Cst

The bar is fixed (u(x)=0) atx = 0, so that we have :

u(x) =
F

EA
x

The displacement at the free tip of the bar is equal to

d =
F

EA
L
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and the equivalent stiffness is given by:

k =
EA

L

m m

EA

d

F

k=F/d

L

x

Figure 50: Reduction of a bar in traction of lengthL, Young’s modulus E and section areaA to an
equivalent springk

Bar in torsion
For a bar in torsion, the direction of motion is a rotation, sothat the force to be applied needs to be a
momentC. The equivalent stiffness is computed through the calculation of the rotation angle at the
position where the moment is applied (Figure 51). The constitutive equation is given by:

Mx = GJ
dθ

dx

whereG = E
2(1+ν) is the shear modulus andJ is the polar inertia (J = πR4/2 for a circular section

of radiusR). For a bar in pure torsion, the torsional momentMx is constant and equal to the applied
momentC, so that the general form ofθ(x) is:

θ(x) =
C

GJ
x+ Cst

The bar is fixed atx = 0 so thatCst = 0 and we finally have:

θ(x) =
C

GJ
x

The rotation at the tip of the bar is

θ(L) =
CL

GJ

so that the equivalent stiffness is equal to

K =
GJ

L

Note that while the motion is a rotation and the force is a moment, it is usual to represent it with an
equivalent system in translation, as this is much easier from a visual point of view.
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Figure 51: Reduction of a bar in torsion of lengthL and torsional stiffnessGJ to an equivalent spring
K

Beam in bending
For beams in bending, we can follow the same approach as the one detailed for the bar in traction and
in torsion. In most cases however, it is more convenient to use solutions directly available in tables. As
an example, we consider a cantilever beam in bending (Figure52). From the tables, we can directly
get the displacementy(x) as a function ofx:

y(x) =
Fx2

6EI
(3L− x)

and deduce the tip displacement

y(L) = d =
FL3

3EI

The equivalent stifness is therfore

k =
3EI

L3

m

m
EI

d F

k=F/d
L

x
k

Figure 52: Reduction of a beam in bending of lengthL and bending stiffnessEI to an equivalent
springk

Let us take a second example of a portal frame represented in Figure 53. The direction of motion
is supposed to be horizontal. Due to the symmetry of the structure, the problem can be studied by
considering only one half of the structure. The force applied in the direction of motion is thusF/2.
Note that the boundary conditions of the beam in bending are different from the previous example,
because the rotation at the tip is zero due to fixation to the rigid floor. For these boundary conditions,
the displacement is given by:

y(x) =
F

24EI
x2(3L− 2x)

The tip displacement is

d = y(L) =
FL3

24EI
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which gives us the value of the equivalent stiffness

k =
24EI

L3

If we neglect the weight of the columns, the natural frequency of the equivalent one dof system is

f =
1

2π

√

24EI

L3Mfloor
(Hz)

Mfloor

F
F/2

EIEI, r

d

d

Figure 53: Reduction of a portal frame to an equivalent mass-spring system

An alternative method can be used to compute the equivalent stiffness. It is based on the equality
of the strain energy of the real structure and the one dof mass-spring system which is given by

Es =
kx2

2
=
F 2

2k
(18)

The principle consists in computing the strain energy of thereal system and then identifying the
equivalent stiffness by expressing the equality with (18).Let us consider the first three examples:

• For a bar in traction, the strain energy is

Es =
1

2

∫ L

0

N2

EA
dx

and the normal forceN is constant and equal toF leading to

Es =
1

2

F 2L

EA
=
F 2

2k
⇒ k =

EA

L

• For a bar in torsion, the strain energy is

Es =
1

2

∫ L

0

M2
x

GJ
dx

and the torsional momentMx is constant and equal toC leading to

Es =
1

2

C2L

GJ
=
C2

2K
⇒ K =

GJ

L
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• For a beam in bending the strain energy is

Es =
1

2

∫ L

0

M2

EI
dx

and for the cantilever beam we haveM(x) = −Fx so that

Es =
1

2

F 2

EI

L3

3
⇒ k =

3EI

L3

This method is fairly simple to apply and gives the same results as the general methodology
presented above. Note that when the flexible body cannot be represented by a simple bar in traction or
torsion, or a beam, the general methodology can still be applied. In order to compute the displacement
d due to a forceF applied in the direction of motion, an effective approach isto discretize the flexible
body using the finite element method. The value ofd computed allows to compute the equivalent
stiffnessk = F/d.

3.4.2 Equivalent mass

The computation of the equivalent mass allows to replace theflexible body by a massless spring. This
approach is valid when the mass of the flexible body is small compared to the moving massm. When
such is not the case, it is possible to take into account the mass of the flexible body using an energy
approach, in a manner analogous to what was done for the equivalent stiffness using the strain energy.
The idea is to express the equality of the kinetic energy of anadditional mass attached to the spring
with the kinetic energy of the flexible body. This is illustrated with the following examples.

Equivalent mass of a spring

Consider a mass-spring system represented in Figure 55. If the mass of the spring is not small
with respect tom, it can be modeled by an additional massms. In order to do that, we express the
kinetic energy of this additional mass:

Ek =
1

2
maẋ

2 (19)

We now compute the kinetic energy of the spring. We assume that when the spring is deformed, the
displacement along the spring is linear:

u(x) = u(L)
x

L

so that the velocity at each pointx is given by

v(x) = u̇(L)
x

L

whereu̇(L) is the velocity at the tip of the spring and is equal toẋ in equation (19). The total kinetic
energy of the spring is

Eks =
1

2

∫ L

0
ρv(x)2 dx =

1

2

∫ L

0
ρ
x2

L2
u̇2(L) =

1

2
ρ
L

3
u̇2(L)

=
1

2

ms

3
u̇2(L) =

1

2

ms

3
ẋ2 =

1

2
maẋ

2
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wherems is the mass of the spring (ms = ρL). The additional mass due to the spring isma = ms/3.

m m

L

x

k,ms

ma

k

Figure 54: Equivalent 1D model of a mass-spring system taking into account the additional mass due
to the spring

Bar in traction
The second example is a mass hanging from a bar. We have already calculated the equivalent stiffness
of the bar in tractionk = EA/L. When the mass of the bar is not small compared to the massm, its
equivalent additional massma needs to be computed. Again, we assume that the displacementis in
the form

u(x) = u(L)
x

L

the velocity is

v(x) = u̇(L)
x

L

whereu̇(L) is the velocity at the tip of the bar and is equal toẋ in equation (19). Following the same
calculations as for the spring, the additional massma is equal tomb/3 wheremb is the mass of the
bar.

m

EA, r L

m

x

F

ma

EA, r L

x

F

d

k=EA/L

Figure 55: Equivalent mass-spring model of a mass hanging from a bar taking into account the addi-
tional mass due to the bar

3.4.3 Equivalent damping

In real structures, damping is a complex phenomenon which comes mainly from two types of sources:
external and internal (Figure 56).
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Figure 56: Sources of damping in real structures

When dissipation is present, the stress is not in phase with the strain, which results in a hysteresis
loop if one plots the stress as a function of the strain (Figure 57).

0

t

û

"

û

"Epot

WD

Figure 57: When the stress is not in phase with the strain (left), this results in a hysteresis loop in the
stress-strain plane (right)

The mechanical energy dissipated in one cycle per unit volumeWD is given by the area inside the
loop :

WD =

∫ T

0
σε̇ dt =

∫

σdε

whereT is the period of one cycle. The damping factorψ of a material is proportional to the ratio of
energy dissipated in one cycle to the maximum strain potential energy:

ψ =
1

2π

WD

Epot

whereEpot is the maximum strain energy. The damping factor of a structure is given by

ψS =

∫

V
ψ dV =

1

2π

WDS

EpotS

It is equal to the damping factor of the material if the structure is homogeneous. The methodology to
compute an equivalent viscous damping coefficient consistsin expressing the equality ofψS for the
structure studied, with the value ofψS for a one dof mass-spring-dashpot system.
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Computation of ψS for a single dof mass-spring dashpot system

Let us consider the mass-spring-dashpot system represented in Figure 58 and compute the dissi-
pated energy in one cycle:

WDS =

∫ T

0
bẋ ẋdt

with x(t) = |X|cos(ωt) we have

WDS =

∫ T

0
ω2b|X|2sin2(ωt)dt =

∫ T

0
ω2b|X|2 1− cos(2ωt)

2
dt

= ω2b|X|2T
2

= πbω|X|2

k

m

f

x=0

b

Figure 58: One dof mass-spring-dasphot system

The maximum potential energy is given by

EpotS =
1

2
kx2max =

1

2
k|X|2

and the damping factor of the mass-spring-dashpot system isgiven by:

ΨS =
1

2π

WDS

EpotS
=

2π

2π

bω|X|2
k|X|2

=
ωb

k

Note that the damping factor the mass-spring-dashpot system computed at the natural frequencyω =
√

k/m is:

ψS(ωn) =

√

k

m

b

k
=

b√
km

= 2ξ

showing the link with the damping coefficientξ defined earlier.

Examples of computation of an equivalent damping

Let us consider a few examples of computation of an equivalent dampingb.

• In the general case whereψS is a known function ofω, we have:

b(ω) =
kψS(ω)

ω
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Note that this model introduces a dependency ofb with respect to the frequencyω. The major
drawback is that it cannot be used for time domain computations (such as when using the
Duhamel’s integral). A good approximation can be obtained by using a viscous damping where
b is a constant by equatingψS at the natural frequency of the system (Figure 59).

Actual damping

Equivalent viscous damper

w w/ n

1 2

YS,eq
YS

Figure 59: Determination of the value of an equivalent viscous damper

b√
km

= ψS(ωn) ⇒ b = ψS(ωn)
√
km

For moderate values of damping, this will lead to a good representation of the damping because
the frequency response of a one dof system is affected by the damping only in a narrow fre-
quency band around the resonance (Figure 44). Therefore, itis necessary to have an accurate
model of damping only in the frequencies close to the resonant frequency.

• For some structures, thehysteretic damping model is often adopted, which consists in assum-
ing ψS as constant. In this case, we have (Figure 60):

ψS =
ωb

k
⇒ b(ω) =

kψS

ω

Note again that this model introduces a dependency ofb with respect to the frequencyω.

w w/ n

YS

1 2

Figure 60: value ofψS for the hysteretic damping model

• In Coulomb friction damping, the damping force is proportional to the weight of the mass and
its sign is opposite to the sign of the velocity. The equationof motion for a single dof system
with Coulomb friction is:

mẍ+ Fcsgn(ẋ) + kx = f

wheresgn(x) = 1 for x > 0 andsgn(x) = −1 or x < 0
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k
m

f(t)

Coulomb friction

Figure 61: One dof system with Coulomb friction

Figure 62 (left) shows an example ofx(t), ẋ(t) andFcsgn(ẋ). The energy dissipated in one
cycle is given by:

WD =

∫ T

0
Fcsgn(ẋ) ẋdt =

∫

Fcsgn(ẋ) dx

which can be computed easily by plotting the coulomb friction force as a function of the dis-
placement of the mass (Figure 62, right).

x(t)
.

x(t)

T

Fc

t

F

Fc

x|X|

-Fc

-|X|

Figure 62: Example of displacement, velocity and friction force for a one dof system with Coulomb
friction

WDS = 4

∫ T/4

0
Fc ẋdt =

∫ |X|

0
4Fcdx

The damping factor of the system is thus

ΨS =
1

2π

4Fc|X|
1
2k|X|2

= 4
Fc

πk|X|

and the value of the equivalent damping

b(ω, |X|) = 4
Fc

πω|X|

The equivalent damping is a function of both the frequency and the amplitude of the displace-
ment of the mass.
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Measurement of damping in one dof systems

Typical values of damping for materials used in civil engineering structures are given in Table 3.
Because the damping in structures comes from the materials but also from the connections, it is
very difficult to predict the damping coefficient of a structure. Because of that, it is often necessary
to measure the damping coefficient after the structure has been built in order to make sure that the
structure is safe. There are two fast and simple techniques to measure this damping coefficient.

Material ξ

Reinforced concrete 0.004-0.012
Composite 0.002-0.003
Steel 0.001-0.002

Table 3: Typical values of damping in civil engineering structures

The first technique is called thelogarithmic decrement method. It is based on the measurement
of the impulse response of the structure. When a structure isexcited by an impulse force, the response
contains mainly its first mode. This is because the form of theimpulse response is a sine function
with an exponentially decaying enveloppe where the coefficient of the exponential is−ξωnt. The
higher modes decrease therefore faster and their contribution to the response is negligible after a few
oscillations. A typical impulse response containing only the first mode of vibration (single dof) is
represented in Figure 63.

t

x(t)

xn

Xn+m

m periods

Figure 63: Impulse response containing the first mode (single dof)

The general form of the response at timet is:

x(t) = e−ξωnt (Acos(ωdt) +Bsin(ωdt))

The responsem periods after timet is:

x(t+mT ) = e−ξωn(t+mT ) (Acos(ωd(t+mT )) +Bsin(ωd(t+mT )))

x(t+mT ) = e−ξωn(t+mT ) (Acos(ωdt) +Bsin(ωdt))

and we have
x(t)

x(t+mT )
=

e−ξωnt

e−ξωn(t+mT )
= eξωn(mT )
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we define the logarithmic decrement

Λ = ln

(

x(t)

x(t+mT )

)

= ξωn(mT ) = ξm
2π

ωd
ωn = 2mπξ

1
√

1− ξ2

For small values ofξ we haveξ2 << 1 which gives:

Λ ≃ 2mπξ

The damping coefficient is given by:

ξ =
1

2πm
Λ

The second technique is called the half-power bandwidth. Itis based on the frequency response
of the system (Figure 64). It consists in identifying the maximum amplitudeA at resonance, followed
by the two points at the left and right of the resonance where the amplitude isA/2 (half power).
The frequenciesΩ1 andΩ2 correspond to these two points, and it can be shown that the damping
coefficient can be approximated by:

ξ =
Ω2 − Ω1

Ω2 +Ω1

The approximation is valid for values ofξ < 0.1.

0 0.5 1 1.5 2
0

w w/ n

|X/X |0

W1 W2

A

A/2

Half-power
bandwidth

Figure 64: Frequency response of a structure focusing on onemode: the half-power bandwidth method
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3.4.4 Reduction to a single dof system : limitations

m

EA, r L

x

F

EA, r L

x

F

d

k=EA/L

m

F

ma

Figure 65: Mass hanging from a bar and equivalent representation with a single dof system with an
equivalent stiffness and an additional mass

Let us consider the structure in Figure 65 which consists of abar to which a mass is hanging.
We have already discussed the reduction of such a system to a single dof system with an equivalent
stiffnessk = EA/L, and an additional massma=mb/3 wheremb is the mass of the bar. The mass is
100kg and the bar is made of steel (E = 210GPa, ρ = 7800kg/m3) and has a lengthL = 1m and a
square section of2cm x 2cm.

The frequency response functionX(ω)/F is plotted in Figure 66 where the exact solution (con-
sidering the bar as a continuous system, see section 6), and the equivalent single dof system (with and
without the additional mass of the bar) are compared. Below 2500 Hz, all three models are in very
good agreement. Around the natural frequency, there is a slight difference in the resonant frequency:
the model taking into account the additional mass matches with the exact solution, while the model
neglecting the additional mass has a resonant frequency slightly higher, but the difference is less than
1%. Above 2500 Hz, the exact solution contains an additionalpeak. This peak is due to the first
resonant frequency of the bar which is coupled with the mass.This additional resonant frequency
cannot be represented by a single dof system.
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Figure 66: Frequency response function of the mass hanging from a bar excited by a vertical force.
Exact response and approximation using a single dof system (with and without additional mass)
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The next graphs in Figure 67 are plotted using a value ofρ 10 times higher (i.e.ρ = 78000kg) for
the bar. While this value is not representative of a real material, the purpose is to illustrate the fact that
in such a case, the mass of the bar cannot be neglected anymore. We see indeed that if the mass of the
bar is neglected, a significant difference is found for the first natural frequency. Another difference is
that the equivalent single dof model is only valid below 500 Hz due to the appearance of several peaks
above this value. These peaks are due to several resonant frequencies of the continuous bar coupled
to the mass. Such additional peaks can again not be represented by a single dof system.

In summary, the examples shown above illustrate the fact that the single dof equivalent system is
only valid in a certain frequency band which depends on dynamic properties of the bodies which are
replaced by an equivalent mass and spring.
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Figure 67: Frequency response function of the mass hanging from a heavy bar excited by a vertical
force. Exact response and approximation using a single dof system (with and without additional mass)

3.5 One DOF application: the accelerometer

By far the most common sensor for measuring vibrations is theaccelerometer. The basic working
principle of such a device is presented in Figure 68(a). It consists of a moving mass on a spring and
dashpot, attached to a moving solid. The acceleration of themoving solid results in a differential
displacementx between the massM and the solid. The governing equation is given by,

Mẍ+ cẋ+ kx = −Mẍ0 (20)

In the frequency domainx/ẍ0 is given by,

x

ẍ0
=

−1

−ω2 + ω2
n + 2iξωωn

(21)

with ωn =
√

k
m andξ = b/2

√
km and for frequenciesω << ωn, one has,

x

ẍ0
≃ −1

ω2
n

(22)

showing that at low frequencies compared to the natural frequency of the mass-spring system,x is
proportional to the acceleration̈x0. Note that since the proportionality factor is−1

ω2
n

, the sensitivity
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of the sensor is increased asω2
n is decreased. At the same time, the frequency band in which the

accelerometer response is proportional toẍ0 is reduced.
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Figure 68: Working principle of an accelerometer

The relative displacementx can be measured in different ways among which the use of piezo-
electric material, either in longitudinal or shear mode (Figure 69). In such configurations, the strain
applied to the piezoelectric material is proportional to the relative displacement between the mass and
the base. If no amplifier is used, the voltage generated between the electrodes of the piezoelectric ma-
terial is directly proportional to the strain, and therefore to the relative displacement. For frequencies
well below the natural frequency of the accelerometer, the voltage produced is therefore proportional
to the absolute acceleration of the base.

m

Longitudinal mode

V

m

Shear mode

m

V

Figure 69: Different sensing principles for standard piezoelectric accelerometers
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4 Vibration isolation

4.1 Direct vibration isolation

The problem of direct vibration isolation consists in preventing the vibrations coming from a given
source to propagate in the building, or in the surroundings.A typical example is the washing mashine
which, when vibrating, transmits the vibration to the floor.Depending on the design of the building,
such vibrations can propagate through several floors. Another example is a power station located
near other buildings such as a school or a hotel. The vibrations generated by the power station can
propagate into the neighboring buildings and cause noise and discomfort. Schematically, the source of
vibrations is represented by a force f acting on a rigid body of massm. This rigid body is fixed to the
ground through some elements which are represented by a spring and a damper in parallel (Figure 70).

k

m

f

b

Figure 70: Direct vibration isolation

The equation of motion is:
mẍ+ bẋ+ kx = f

The force transmitted to the ground (surroundings) is :

fT = bẋ+ kx

In the frequency domain, we have

F =
(

k − ω2m+ iωb
)

X ⇒ |F | =
√

(k − ω2m)2 + ω2b2|X|

and
FT = (k + iωb)X ⇒ |FT | =

√

k2 + ω2b2|X|
The isolation factor is given by:

|FT |
|F | =

√
k2 + ω2b2

√

(k − ω2m)2 + ω2b2

and using the definitions ofξ = b/(2
√
km) andωn =

√

k/m we get :

|FT |
|F | =

√

1 + (2ξ ω
ωn

)2

√

(1− ( ω
ωn

)2)2 + (2ξ ω
ωn

)2
(23)

The isolation factor is a function of the frequencyω and is plotted in Figure 71.
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Figure 71: Isolation factor for the direct vibration isolation problem

One can distinguish two different domains:

• for frequenciesω <
√
2ωn, |FT |/|F | > 1, this is the amplification domain where no isolation is

achieved, the amplitude of the force transmitted to the ground is greater than the force applied to
the body. In this domain, adding damping improves the situation: the amplification at resonance
decreases.

• for frequenciesω >
√
2ωn we are in the isolation domain: the force transmitted to the ground is

smaller than the forcef . In this domain, adding damping has a negative impact on the isolation
which decreases.

For the damping, an ideal situation would be to have a damper which has a high damping at low
frequencies and a low damping at high frequencies. Materials such as rubber and elastomers exhibit
that type of damping properties. The problem of direct vibration isolation consists in designing the
one dof system such that for the excitation frequencies considered, we are in the isolation domain. If
these excitation frequencies are low, it requires to have a very low resonant frequency of the single
dof system. There are two ways to achieve this: the first one isto have a very soft spring. Note that
the spring must be strong enough to sustain the static load ofthe mass which in general does not allow
to use very flexible springs. The second way is to increase themass of the system. This can be done
for example by adding a rigid and heavy foundation to the rigid body of massm.

4.2 Inverse vibration isolation

The problem of inverse vibration isolation consists in designing an isolator on which sensitive equip-
ment is attached in order to prevent the vibrations from the environment to reach the sensitive equip-
ment. Examples are precision devices such as microscopes orlithography machines which need to be
isolated from ground motion, or buildings which need to be isolated from the ground motion due to
earthquakes. Schematically, the vibrations from the environment are represented by a ground motion
x, and the sensitive equipment is the rigid bodym attached to the ground through a spring and a
damper (Figure 72).
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Figure 72: Inverse vibration isolation

The equation of motion is:
mẍ+ k(x− y) + b(ẋ− ẏ) = 0

which can be rewritten
mẍ+ kx+ bẋ = ky + bẏ

In the frequency domain we have:

(

k − ω2m+ iωb
)

X = (k + iωb)Y

The transmissibility of the one dof system is defined as:

|Y |
|X| =

√
k2 + ω2b2

√

(k − ω2m)2 + ω2b2

One can note that while the physical problem is different, the transmissibility has the same expression
as the isolation factor in (23). The transmissibility is a function of the frequency and represented in
Figure 73. The same remarks as for the isolation factor concerning the damping and the design of the
isolation device hold.
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Figure 73: Transmissibility for the inverse isolation problem
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The following movies illustrate the effect of an isolator for different problems such as building
isolation for earthquakes:

Vibration isolation demonstrations :
http://www.youtube.com/watch?v=ntV6LQF1GxA
http://www.youtube.com/watch?v=reYtUNLXvt8
http://www.youtube.com/watch?v=YPAOZXc33gE
http://www.youtube.com/watch?v=MboMuAzRUF0
http://www.youtube.com/watch?v=ChaqMDc4ces
http://www.youtube.com/watch?v=ZqlXp3czrrM
http://www.youtube.com/watch?v=Fw7aQwMmBNM

Application to buildings:
http://www.youtube.com/watch?v=phgdkqn9aTI
http://www.youtube.com/watch?v=Nc4JcWn6nYs
http://www.youtube.com/watch?v=Es0Bp7XYJbk
http://www.youtube.com/watch?v=5zVUDyBaN3E
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5 Multiple degree of freedom systems

Figure 74 represents a series of systems which can be modeledas multiple degree of freedom systems.
In the example of the automobile suspension, the motion has been extended to multiple degrees of
freedom by considering both the vertical translation and the rotation of the car, as well as the flexibility
of the tires (which adds two degrees of freedom).
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Figure 74: Examples of multiple dofs systems
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5.1 Response of a multiple degrees of freedom system withoutdamping

Let us consider the two dofs system represented in Figure 75.A forcef is applied to the second mass.
The first law of Newton is applied to each mass:

mẍ1 = −kx1 − k (x1 − x2) (24)

mẍ2 = k (x1 − x2)− kx2 + f (25)

k

k
k(x -x )1 2

k kx2

m
m

m
m

x2

x1

x

f
f

kx1

Figure 75: Forces acting on a two dofs system with two masses and three springs

This set of equations can be written in a matrix form:

[

m 0
0 m

]{

ẍ1
ẍ2

}

+

[

2k −k
−k 2k

]{

x1
x2

}

=

{

0
f

}

(26)

or in a more compact form
Mẍ+Kx = F (27)

whereM is the mass matrix,K is the stiffness matrix,F is the vector of forces, andx is the vector
containing the dofs of the system (herex1 andx2). The form of equations in (27) can be generalized
to write the equations of motion of a system withn dofs. In such a case, the size of the matrices isn
x n and the size of the vectors isn.

5.1.1 General solution of the equations of motion

The general solution of (27) can be obtained assuming

{

x1(t)
x2(t)

}

=

{

A1

A2

}

ert = ψert

Equation (27) becomes:
(

K + r2M
)

ψ = 0

This set of equations admits a non-trivial solution if

det(K + r2M) = 0
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The roots of the determinant are purely imaginary and appearas complex conjugate pairs (this is due
to the nature of the matricesK andM which are positive definite). They can be written

r2 = −ω2

so that equation (27) can be written:
(

K − ω2M
)

ψ = 0

This set of equations is an eigenvalue problem. Its solutionwill give a set of eigenvalues called the
eigenfrequencies (ωi, i=1..n, wheren is the number of dofs) and the associated eigenvectorsψi called
the mode shapes. The general solution of the equation of motion can be written as the sum of functions
in the spatial domain (the mode shapes) and oscillatory functions in the time domain (oscillations at
frequenciesωi):

x(t) =
n
∑

i=1

(Zi1cos(ωit) + Zi2sin(ωit))ψi

The coefficientsZij are a function of the initial conditions (displacement and velocity).

Illustration: two degrees of freedom system
The eigenfrequencies and mode shapes of the system represented in Figure 75 satisfy the set of equa-
tions:

(

K − ω2M
)

ψ = 0 (28)

A non-trivial solution exists if

det(K − ω2M) = det

(

2k − ω2m −k
−k 2k − ω2m

)

= 0

which leads to
(2k − ω2m)(2k − ω2m)− k2 = m2ω4 − 4kmω2 + 3k2 = 0

The solutions of this second order equation (ω2 is the unknown) are:

ω2
1 = k/m

ω2
2 = 3k/m

The mode shapes associated to these two eigenfrequencies are obtained by replacingω successively
by ω1 andω2 in the first (or the second) line of (28):

Forω2
1 = k/m

(

2k − k

m
m

)

A1 − kA2 = 0

kA1 = kA2 ⇒ A1 = A2

Forω2
2 = 3k/m

(

2k − 3k

m
m

)

A1 − kA2 = 0

−kA1 = kA2 ⇒ A1 = −A2
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The two mode shapes are then given by (note that a mode shape isalways known up to a constant)

ψ1 =

{

1
1

}

ψ2 =

{

1
−1

}

The first mode shape corresponds to a translation of the two masses in phase (there is no strain
in the middle spring), while the second mode shape corresponds to a motion of the two masses in
opposition of phase (Figure 76).

m m

m
m

x

x2

x1

x2

x1

Mode 1 Mode 2

Figure 76: Mode shapes of the two dofs system represented in Figure 75

The general solution can be written in the form:

{

x1(t)
x2(t)

}

= (Z11 cosω1t+ Z12 sinω1t)

{

1
1

}

+ (Z21 cosω2t+ Z22 sinω2t)

{

1
−1

}

Let us assume that a zero initial velocity is imposed to the two masse (̇x1(0) = ẋ2(0) = 0) and
that an initial displacement is imposed in the form of

{

x1(0)
x2(0)

}

=

{

0
1mm

}

These four conditions allow to determine the four constantsZij. The solution is
{

x1(t)
x2(t)

}

=

(

1
2 cosω1t− 1

2 cosω2t
1
2cosω1t+

1
2cosω2t

)

(mm)

The free vibration of the two dofs system subject to these initial conditions is shown in Figure 77.
The presence of two frequencies, due to the existence of two eigenfrequencies can be noticed. As
the number of dofs increases in a system; the number of eigenfrequencies also inscreases and the free
vibration contains more and more frequencies.
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Figure 77: Free vibration of a two dofs system subject to an initial zero velocity and an imposed
displacementx1 = 0, x2 = 1(mm)

5.1.2 Orthogonality of the mode shapes

In the following, we will demonstrate the property of orthogonality of the modeshapes:

ψT
i Mψj = δijµi

ψT
i Kψj = δijµiω

2
i

Proof:
Let us take two eigenfrequenciesωi andωj such thatωi 6= ωj. The associated mode shapes areψi

andψj . We have:

(

K − ω2
iM
)

ψi = 0
(

K − ω2
jM
)

ψj = 0

Let us premultiply the first expression byψT
j and the second byψT

i and make a substraction:

ψT
j Mψi

(

ω2
i − ω2

j

)

= 0

where we have used the fact that matrixK is symmetric so thatψT
i Kψj = ψT

j Kψi. As we have
assumedωi 6= ωj, we find:

ψT
j Mψi = 0 i 6= j

For i = j; we define
ψT
i Mψi = µi

The second orthogonality relationship is easily deduced, as we haveKψi = ω2
iMψi and therefore

ψT
j Kψi = ω2

i ψ
T
j Mψi = 0 i 6= j

ψt
iKψi = ω2

i ψ
T
j Mψi = ω2

i µi

The orthogonality conditions can also be written in a matrixform. Let us define the matrix of mode
shapes whose columns are the mode shapes:

Ψ =
[

ψ1 ψ2 ... ψn

]
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we have:

ΨTMΨ = diag(µi)

ΨTKΨ = diag(µiω
2
i )

wherediag(µi) is a diagonal matrix with the valuesµi on the diagonal:

diag(µi) =









µ1 0 ... 0
0 µ2 ... 0
... ... ... ...
0 0 ... µn









These relationships express the fact that the mode shapes are orthogonal with respect to the matri-
cesM andK. They can therefore be used as a basis of orthogonal functions to represent the solution
of the problem.

5.1.3 Particular solution of the equation of motion

Let us start from equation (27) and decompose the solution ofthe problem in the basis of the mode
shapes:

x(t) =

n
∑

i=1

zi(t)ψi

which can be written in a matrix form :
x = Ψz

wherez is the vector of modal amplitudes. Let us replacex byΨz in (27) and premultiply byΨT , we
have:

ΨTMΨz̈ +ΨTKΨz = ΨT f

and using the orthogonality conditions, we find:

diag(µi)z̈ + diag(µiω
2
i )z = ΨTf

which is a set ofn uncoupled equations of the type

µiz̈i + µiω
2
i zi = Fi (29)

Equation (29) corresponds to the equation of motion of a single dof system with

• a massµi, called the modal mass

• a stiffnessµiω2
i

• a natural frequencyωi = 2πfi

• a forceFi = ψT
i f (modal excitation)

In summary, by writing the particular solutionx(t) as a function of the modal amplitudeszi(t)
and the mode shapesψi, it is possible to transform the initial set ofn coupled equations into a set
of n uncoupled equations. Each independent equation corresponds to the equation of motion of a
single dof system. All the tools presented in Section 3 can therefore be used to find the solution of the
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equations of motions of a mdof system.

The particular solution can be calculated in the frequency domain following the same approach,
assumingx(t) = Xeiωt andf(t) = Feiωt whereX andF are vectors of sizen, we have:

(

K − ω2M
)

X = F (30)

While this equation can be solved directly by inverting the matrix
(

K − ω2M
)

at each frequency,
a simpler and more efficient method consists in assuming thatthe solutionX can be written as a
function of the mode shapes:

X(ω) =

n
∑

i=1

Zi(ω)ψi

which can be written in a matrix form:
X = ΨZ

whereZ is a vector of modal amplitudes. Let us replace in (30), and premultiply byΨT , we have:

(

ΨTKΨ− ω2ΨTMΨ
)

Z = ΨTF

and using the orthogonality properties:

















µ1ω
2
1 0 ... 0

0 µ2ω
2
2 ... 0

... ... ... ...
0 0 ... µnω

2
n









− ω2









µ1 0 ... 0
0 µ2 ... 0
... ... ... ...
0 0 ... µn































Z1

Z2

...
Zn















=















ψT
1 F
ψT
2 F
...
ψT
nF















We obtain a set ofn decoupled equations. The unknownsZi can easily be solved for:

Zj(ω) = ψT
j F

1

µj(ω
2
j − ω2)

The Bode diagram ofZi is identical to the Bode diagram of a single dof system and will present a
resonant peak at the angular frequencyωi. In the absence of damping,Zi is always real (positive
or negative). The displacementX(ω) can be retrieved by summing the contributions of the different
mode shapes (Figure 78):

X(ω) =

n
∑

j=1

Zj(ω)ψj =

n
∑

j=1

ψT
j Fψj

µj(ω2
j − ω2)

The Bode diagram ofX(ω) will therefore present a maximum ofn resonant peaks.
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Figure 78: The responseX(ω) is the sum of the response of single dof systems with amplitude Zj,
j=1...n

Illustration: two degrees of freedom system

We consider again the two dofs system represented in (Figure75). The matrix of the mode shapes
is written:

Ψ =

[

1 1
1 −1

]

We compute the values ofµi:

ΨTMΨ =

[

1 1
1 −1

] [

m 0
0 m

] [

1 1
1 −1

]

=

[

2m 0
0 2m

]

⇒ µ1 = µ2 = 2m

and the values ofFi = ΨTF :

ΨTF =

[

1 1
1 −1

]{

0
F

}

=

{

1
−1

}

The modal amplitudesZi are given by:

Z1 =
1

2m( k
m − ω2)

Z2 =
−1

2m(3km − ω2)

and the response of the system is:

X(ω) =

{

X1(ω)
X2(ω)

}

=
1

2m( k
m − ω2)

{

1
1

}

+
−1

2m(3km − ω2)

{

1
−1

}

The Bode diagrams ofX1(ω) andX2(ω) are represented on Figure 79, where the modal ampli-
tudesZ1 andZ2 are also represented. It is interesting to take a closer lookat what happens between
the eigenfrequenciesf1 andf2. For mass 1, the contributionsZ1 andZ2 are in phase, so that the
amplitudes are added, resulting in a higher amplitude ofX1. For mass 2, the contributionsZ1 and
Z2 have an opposite phase. At the frequency at which their amplitude is equal, the sum of the con-
tributions is therefore zero: at that frequency, mass 2 is not moving. This frequency is called an
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anti-resonance. The resonant frequencies of a system are a global property (they are present on the
Bode diagram for each dof of the system), while the anti-resonances are a local property of the system
(they are present only at specific dofs of the system).
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Figure 79: Bode diagram of the response of the two dofs systems (X1 andX2)

The following videos illustrate the resonance of single dofs and a three dofs systems:

3 SDOF systems : http://www.youtube.com/watch?v=iyw4AcZuj5k
3 DOFS system : http://www.youtube.com/watch?v=OaXSmPgl1os

5.2 Response of a multiple degrees of freedom system with damping

Let us consider the two dofs system represented in Figure 80.Damping has been introduced through
three viscous dampers.

k(x -x )+b1 2 (x -x )1 2

k

k

k

kx +bx2 2

m
m

m
m

x2

x1

x

f
f

kx +b1 x1

b

b

b

Figure 80: Two dofs system with damping

The equations of motion are obtained as in Section 5.1, taking into account the forces due to the
dampers. In a matrix form, we have:

[

m 0
0 m

]{

ẍ1
ẍ2

}

+

[

2b −b
−b 2b

]{

ẋ1
ẋ2

}

+

[

2k −k
−k 2k

]{

x1
x2

}

=

{

0
f

}
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which can be written in a compact form

Mẍ+ Cẋ+Kx = f (31)

whereC is the damping matrix.

5.2.1 General solution of the equations of motion

The general solution of the equations of motion of a damped mdof system can be obtained by posing
{

x1(t)
x2(t)

}

=

{

A1

A2

}

ert = ψert

Equation (31) becomes
(

K + rC + r2M
)

ψ = 0

which admits non-trivial solutions for the roots of

det(K + rC + r2M) = 0

The roots of this determinant are complex, and the free response is characterised by oscillatory func-
tions with an exponentially decaying envelope in the time domain. The associated eigenvectors are
also complex, which means that their different components are not in phase. As it is not very common
to use complex mode shapes in structural dynamics, we will not discuss them in further details.

5.2.2 Particular solution of the equations of motion

An alternative to the use of complex mode shapes is to calculate the response of the system using the
real mode shapes associated to theK andM matrices. Let us start from equation (31) and decompose
the solution of the problem in the basis of the mode shapes:

x(t) =

n
∑

i=1

zi(t)ψi

which can be written in a matrix form :
x = Ψz

wherez is the vector of modal amplitudes. Let us replacex byΨz in (31) and premultiply byΨT , we
have:

ΨTMΨz̈ +ΨTCΨż +ΨTKΨz = ΨT f

In general, the termΨTCΨ is not diagonal and the equations remain coupled. An approximation can
be obtained however in the following cases:

• Rayleigh damping: this damping model assumes that the matric C can be written as:

C = αK + βM

In such a case, the termΨTCΨ reduces to:

ΨTCΨ = ΨT (αK + βM)Ψ = diag(αµiω
2
i + βµi)

This model is often used as an approximation in order to decouple the equations, but the model
has no physical meaning.
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• Modal damping: when the damping is small, the off-diagonalterms ofΨTCΨ can be neglected,
and it reduces to:

ΨTCΨ =









2µ1ξ1ω1 0 ... 0
0 2µ2ξ2ω2 ... 0
... ... ... ...
0 0 ... 2µnξnωn









where we have introduced the modal dampingξi.

The modal damping is a more general and flexible model than Rayleigh damping. This can easily
be shown by equating the result of the productΨTCΨ in the two models:

diag(αµiω
2
i + βµi) = diag(2ξiµiωi)

which leads to :

ξi =
1

2

(

αωi +
β

ωi

)

In the modal damping model, the damping coefficient of each mode can be set independently, while
in the Rayleigh damping model, the modal damping coefficients have a specific evolution which is
a function of only two coefficientsα andβ. An example of evolution of the coefficientsξi for a
Rayleigh damping model is shown in Figure 81, where it can be seen that the model leads to very
high values of damping at low frequencies and at high frequencies. Such values are in general not in
accordance with the damping level at those frequencies, andthe Rayleigh model can only fit to two
values ofξi. In general, it is difficult to obtain an accurate model of matrix C and to determine the
modal damping coefficientsξi. In the absence of experimental results which could be used to identify
these values, a fixed value can be used. This fixed value depends on the type of structure considered.
It is of common practice to use a fixed value ofξ = 0.01 in the absence of information about the
damping.
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Figure 81: Evolution of the modal damping coefficients for the Rayleigh damping model

Using the more general form of the modal damping model, we find:

diag(µi)z̈ + diag(2ξiµiωi)ż + diag(µiω
2
i )z = ΨT f
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which is a set ofn uncoupled equations of the type

µiz̈i + 2ξiµiωiz + µiω
2
i zi = Fi (32)

Equation (32) corresponds to the equation of motion of a damped single dof system with

• a massµi, called the modal mass

• a stiffnessµiω2
i

• a damping coefficientξi

• a natural frequencyωi = 2πfi

• a forceFi = ψT
i f (modal excitation)

The particular solution can be calculated in the frequency domain following the same approach,
assumingx(t) = Xeiωt andf(t) = Feiωt whereX andF are complex vectors of sinen, we have:

(

K + iωC − ω2M
)

X = F (33)

the solutionX is written as a function of the mode shapes:

X(ω) =

n
∑

j=1

Zj(ω)ψj

which can be written in a matrix form:
X = ΨZ

whereZ is a complex vector of modal amplitudes. Let us replace in (30), and premultiply byΨT , we
have:

(

ΨTKΨ+ iωΨTCΨ− ω2ΨTMΨ
)

Z = ΨTF

and using the orthogonality properties and the modal damping model:

µj(ω
2
j − ω2 + 2iξjωωj)Zj = Fj

We obtain a set ofn decoupled equations. The unknownsZj can easily be solved for:

Zj(ω) =
ψT
j F

µj(ω2
j − ω2 + 2iξjωωj)

The Bode diagram ofZi is identical to the Bode diagram of a damped single dof systemand will
present a damped resonant peak at the angular frequencyωi. Due to the damping,Zi is complex. The
displacementX(ω) can be retrieved by summing the contributions of the different mode shapes:

X(ω) =
n
∑

j=1

Zj(ω)ψj =
n
∑

j=1

ψT
j Fψj

µj(ω2
j − ω2) + 2iξjωωj
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Illustration: two degrees of freedom system
Let us consider the system represented in Figure 80, and takethe following values for the different
coefficients:k = 1N/m,m = 1kg andb = 0.04Ns/m. In the present case, matrixC is proportionnal
to matrixK and the productΨTCΨ is diagonal. We calculate the valus ofξj : ξ1 = 2% andξ2 =
3.5%. The forced response of mass 2 as a function of the frequency is represented on Figure 82. Note
that the second peak is more damped than the first one due to thefact thatξ2 > ξ1.

Frequency(Hz)

f(°)

|X /F|2

x1=2%

x2=3.5%

Figure 82: Bode diagram for mass 2 of the two dofs system with adamping matrix propotionnal to
the stiffness matrix

Let us now remove the damper between mass 1 and the ground (Figure 83). MatrixC is not
proportional to matrixK anymore so that the productΨTCΨ is not diagonal. Let us neglect the off-
diagonal terms and compute the modal damping coefficients. We getξ1 = 1% eandξ2 = 2.9%. On
Figure 84, the Bode diagram for mass 2 is plotted and the solution found neglecting the off-diagonal
terms is compared to the solution obtained with the coupled equations (no terms neglected). The
figure shows that the solutions are almost identical. It is therefore justified to neglect the off-diagonal
terms because the damping is small.
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m

x

f
b

b

Figure 83: Two dofs system with damping - the viscous damper between the ground and mass 1 has
been removed
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Figure 84: Bode diagram for mass 2 of the two dofs system with anon-proportionnal damping:
comparison between the exact solution and the approximation using the modal damping model for a
low value of damping

Let us now assume that the damping coefficient isb = 0.2Ns/m. The modal damping coefficients
areξ1 = 5% et ξ2 = 14.43% which cannot be considered as small damping anymore. In thiscase, as
shown in Figure 85, the modal damping model deviates from theexact solution.
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Figure 85: Bode diagram for mass 2 of the two dofs system with anon-proportionnal damping:
comparison between the exact solution and the approximation using the modal damping model for a
high value of damping

5.3 MDOF application: the tuned mass damper

A tuned mass damper (TMD) is a device that it attached to a primary structure in order to damp its
vibrations. The first type of tuned mass damper we are going tostudy is a mass-spring system . In this
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study, we assume that the primary system is modeled by an equivalent 1 DOF system (Figure 86).

k

M
fK

m

x1

x2

Tuned mass damper

Primary system

B

b

Figure 86: A mass-spring tuned mass damper (TMD) attached toa primary structure modeled as a 1
DOF system

The equations of motions of this 2 DOFs system are:
[

M 0
0 m

]{

ẍ1
ẍ2

}

+

[

B + b −b
−b b

]{

ẋ1
ẋ2

}[

K + k −k
−k k

]{

x1
x2

}

=

{

f
0

}

In the frequency domain, we havex1(t) = X1e
iωt, x2(t) = X2e

iωt, andf(t) = Feiωt which leads
to:

[

K + k + iω(B + b)− ω2M −(k + iωb)
−(k + iωb) k − ω2m+ iωb

]{

X1

X2

}

=

{

F
0

}

we solve for the displacement of the primary systemX1:

X1/F =
k − ω2m+ iωb

(K + k + iω(B + b)− ω2M)(k − ω2m+ iωb)− (k + iωb)2

Let us first consider the case where there is no damping in the TMD (b = 0). In this case, we have:

X1/F =
k − ω2m

(K + k + iωB − ω2M)(k − ω2m)− k2

We see that the displacement of the primary structureX1 will be zero at a frequency given by

ω =

√

k

m

which is the natural frequencyωn of the TMD. If one wishes to cancel the vibration at the resonant
frequency of the primary structureΩ =

√

K/M , we need to have

ωn = Ω

We define the frequency ratioν = ωn/Ω. In order to cancel the vibration at the resonant frequency of
the primary structure, we need to haveν = 1: the TMD is ”tuned” to the eigenfrequency of the primary
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structure. Figure 87 shows the Bode diagram ofX1 for the primary structure with and without the
TMD. The addition of the TMD results in an anti-resonance at the natural frequency of the primary
structureΩ. The amplitude of the vibration is also reduced in a narrow frequency band aroundΩ.
Outside this frequency band, the amplitude of vibration is increased, and there are now two resonant
peaks leading to a very large amplification around the two eigenfrequencies of the system. The use
of such a device is interesting only if the excitation sourceis in a narrow band around the natural
frequency. Otherwise, although the amplitude around the resonance is decreased, it is increased at
other frequencies, so the problem is only shifted in frequency.
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Figure 87: Effect of an undamped TMD on the primary structure’s responseX1

If one wishes to lower the vibration of the primary structureX1 in a wide frequency band around
its natural frequencyΩ, it is necessary to introduce damping in the TMD (b 6= 0). Figure 88 shows
the response of the system for different values ofb and for a tuning parameterν = 1. The mass ratio
defined asµ = m/M is equal to 3%.
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Figure 88: Effect of a damped TMD on the primary structure’s responseX1

Note the existence of two pointsP andQ where all the curves for the different values ofb cross.
The optimal tuning of a TMD consists in finding the parametersm,k andb such that the two points
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P andQ are at the same height, and such that the responseX1 is maximum at these two points. Den
Hartog derived simple equations which lead to an approximation of this optimal TMD. The equation
leading to the same height forP andQ is given by

ν =
1

1 + µ
(34)

In general, the value of the massm is chosen a priori. For practical reasons, it is chosen such that
µ does not exceed a few percents of the mass of the primary system. Equation (34) is then used to
determine the value ofk. The optimal damping is then found with

ξ =

√

3µ

8(1 + µ)
=

b

2
√
km

(35)

which gives the optimal value forb. The response of the primary structure with an optimal TMD is
shown in Figure 89.
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Figure 89: Effect of the optimal TMD on the primary structure’s responseX1

There are many examples of installation of TMDs on civil engineering structures, such as:

• The Millenium Bridge, for which this solution was adopted due to the large vibrations induced
by pedestrians walking on the bridge which led to the closureof the bridge directly after its
opening.

http://www.gerb.com
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• The John Hancock Tower in Boston (1976), where two TMDs consisting of large steel blocks
of approx 5.2x5.2x1m (weighting 270 Tons) were installed atthe top of the tower (tuned to 0.14
Hz).

http://www.lemessurier.com

• The city corp Center in New York (1977), where 1 TMD of 400 Tons acting in two directions
has been installed (tuned to 0.16 Hz).

http://www.estructura.it

• The Chiba Port Tower (Japan - 1986), where 1 TMD of 15 Tons acting in two directions has
been installed (0.44 Hz).

http://www.iitk.ac.in
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The two following movies demonstrate the efficiency of a TMD applied to a host structure:

Undamped pendulum tuned mass damper:
http://www.youtube.com/watch?v=bqJadkufes4

Tuned mass damper on a bridge:
http://www.youtube.com/watch?v=e01_3mUGeyw

The second type of TMD we are going to study is the pendulum TMD. Instead of a mass-spring
system, a pendulum is attached to the primary structure (Figure 91). Here again, the primary structure
is modeled as a one DOF system. Note that the direction of motion is always horizontal for this type
of TMD. A mass-spring TMD can be implemented to damp the motion either in the horizontal, or the
vertical direction.
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Pendulum tuned mass damper

Primary system

x

m

q
l

b

B

Figure 90: A pendulum TMD attached to a primary structure modeled as a 1 DOF system

The equations of the PTMD attached to the primary structure are non-linear. After linearization (θ
small⇒ cos θ ≃ 1, sin θ ≃ θ andθ̇2 neglected), they are given by:

(M +m)ẍ+mlθ̈ +Kx+Bẋ = f

m(ẍ+ lθ̈) +mgθ + = 0

In the frequency domain, we havex(t) = Xeiωt, θ(t) = Θeiωt andf(t) = Feiωt which leads to:

[

K + iωB − ω2(M +m) −mlω2 − iωbl
−ω2m mg + iωbl − ω2ml

]{

X
Θ

}

=

{

F
0

}

We solve the equation for the displacement of the primary structureX

X

F
=

mg
l + iωb− ω2m

(K + iωB − ω2(M +m))(mg
l + iωb− ω2m)− ω2m(iωb+ ω2m)

Let us first consider the case where there is no damping in the PTMD, we have:

X

F
=

mg
l − ω2m

(K + iωB − ω2(M +m))(mg
l − ω2m)− (ω2m)2
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Let us define

ωn =

√

g

l

which is the eigenfrequency of the undamped TMD and

Ω =

√

K

M

which is the eigenfrequency of the primary structure without the TMD. In order to cancel the vibration
at the eigenfrequency of the primary structure, we need to haveν = 1 where

ν =
ωn

Ω

Figure 91 shows the response of the primary structureX with and without PTMD (ν = 1) and for
several values of the mass of the pendulum. Note that the eigenfrequency of a pendulum only depends
on its length, and not on its mass, so the tuning is not alteredwhen the mass is increased. We see that
the two peaks are further apart as the mass increases. As in the case of the mass-spring TMD, when
there is no damping, the vibration can be canceled at the resonant frequency of the primary structure,
but we note the appearance of two peaks away from that resonant frequency. The device is therefore
only suited when one wants to decrease the vibration in a narrow frequency band around the resonance
(the frequency band can be made larger if one increases the mass of the PTMD).
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Figure 91: Response of the primary structure to which and undamped PTMD is attached

Let us now consider the case of the damped PTMD. As the equations are different from the mass-
spring TMD, we cannot apply equations (34) and (35). The firsttuning rule is given by:

ν =

√

2

(2 + 3µ)(1 + 2µ)

The second rule is much more complex and given by:

r =

√
2
√
µ
√

3
√
µ
√

3µ2 + 4µ + 1
√
3µ+ 2− 9µ2 − 11µ − 3

√

−3µ2 − 5µ+
√
µ
√

3µ2 + 4µ+ 1
√
3µ + 2− 2

√
3µ+ 2 (4µ + 2)
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with

r =
b

2mΩ

This expression can be fairly well approximated by a fifth order polynomial:

r = −4351µ4 + 1074µ3 − 99.1µ2 + 4713µ + 0.0167

for values ofµ < 0.1.
The response of the primary system with an optimal PTMD is represented on Figure 92.
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Figure 92: Response of the primary structure to which an optimal damped PTMD is attached

The most famous PTMD is the one in the Taipei 101 building (Figure 93), in Taiwan. The damper
consist of a steel sphere 6 meters across and weighting 728 tons, suspended from the 92nd to the 87th
floor.

Figure 93: The Taipei 101 building with a PTMD (http://en.wikipedia.org/wiki/Tunedmassdamper)

For more details on the building and the attached PTMD, see:
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Taipei Discovery Channel: http://www.youtube.com/watch?v=xF7foZ-oiSo
Taipei 101 sketch of pendulum: http://www.youtube.com/watch?v=uybEXOkkrsw
Taipei TMD Motion on May 12, 2008 : http://www.youtube.com/watch?v=NYSgd1XSZXc

Additional movies (not played in class)

Citicorp Center
http://www.youtube.com/watch?v=TZhgTewKhTQ
http://www.youtube.com/watch?v=4fUwgH0gOWo
http://www.youtube.com/watch?v=IBjyB8EY2m4#t=2
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6 Continuous systems

In the previous chapters, we have studied systems which can be simplified and modeled as masses
connected with springs and dampers. In the real world, structures are always continuous. Some
continuous structures can be simplified and be modeled as beams or bars, while others cannot. In
the first part of this section, we will discuss the computation of the dynamic response of bars and
beams. The second part will be devoted to the computation of the dynamic response of more general
continuous structures. A continuous system can be seen as the limit whenn tends to infinity of an
dofs system. A continuous system therefore has an infinite number of eigenfrequencies and mode
shapes.

6.1 Beams and bars

6.1.1 Boundary conditions for beams and bars

If we consider a bar in traction, the displacement is in thex direction (Figure 94). Atx = 0 and
x = L, the bar can either be free or fixed. A fixed condition corresponds tox = 0, while a free
condition corresponds to the absence of an applied normal forceN = Eε = E du

dx , which we usually
simplify to u′ = du

dx=0 (Figure 95).

u(x)

x

Figure 94: Bar in traction: the displacement is in thex direction

N=0 -> u’=0u=0

Figure 95: Boundary conditions for bars in traction

If we consider a beam in bending, the displacement is in they direction (Figure 96). Atx = 0
andx = L, there are four possible boundary conditions. The first two boundary conditions are linked
to the vertical displacement which is either fixed (y = 0) or free (the shear forceT = −EIyIII = 0,
which can be simplified toyIII = 0), while the second set of boundary conditions is linked to the
rotation which is either fixed (y′ = 0) or free (the bending momentM = −EIy′′ = 0, which can be
simplified toy′′ = 0) (Figure 97).

y(x)

x

Figure 96: Bar in bending: the displacement is in they direction
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M=0 -> y’’=0
T=0 -> y’’’=0

M=0 -> y’’=0
y=0

y=0

=0 -> y’=0q

Figure 97: Boundary conditions for beams in bending

6.1.2 Bar in traction: equation of motion

The equation of motion for a bar in traction can be found by isolating a small part of the bar of length
dx as shown in Figure 98:

−N + p(x, t) dx +N + dN = (ρAü(x, t)) dx

wherep(x, t) is the load per unit of length in directionx, ρ is the density of the material (kg/m3) and
A is the area of the section of the bar. This expression leads to

dN

dx
=

∂

∂x

(

EA
∂u

∂x

)

= EA
∂2u(x, t)

∂x2
= ρAü(x, t)− p(x, t)

assumingEA is constant. We therefore have

EA
∂2u(x, t)

∂x2
− ρAü(x, t) = −p(x, t) (36)

dx

N+dNN
p(x,t)

x

u(x,t)

L

Figure 98: Equilibrium of a small part of a bar of lengthdx

6.1.3 Bar in traction: mode shapes and eigenfrequencies

Assumingu(x, t) = U(x)eiωt, the mode shapes and eigenfrequencies are the solution of the equation
of motion with the right-hand side equal to 0:

EA
d2U

dx2
+ ρAω2U = 0

which can be rewritten
d2U

dx2
+
ρ

E
ω2U = 0
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This equation is of the second order for the variablex, the general solution can therefore be written
U(x) = Aerx and the characteristic equation is given by:

r2 +
ρ

E
ω2 = 0

The two roots are

r1,2 = ±iω
√

ρ

E

and the general solution is:

U(x) = Acos(ω

√

ρ

E
x) +Bsin(ω

√

ρ

E
x)

The constantsA andB are a function of the boundary conditions. For a fixed-fixed bar, we have:

U(0) = 0 ⇒ A = 0

U(L) = Bsin(ω

√

ρ

E
L) = 0

There exists a non-trivial solution if we have

ω

√

ρ

E
L = nπ n = 1, ...,∞

The eigenfrequencies are therefore given by

ωn = n
π

L

√

E

ρ
n = 1, ...,∞

and the associated mode shapes

U(x)n = sin(
nπx

L
) n = 1, ...,∞

The three first traction mode shapes of a concrete cylinder are represented in Figure 99. The color
code corresponds to the amplitude of displacement in the axial direction. One can see clearly the
presence of nodes of vibration (zero displacement) in modes2 and 3 (in addition to the faces of the
cylinder which are also fixed).
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Mode 1 Mode 2

Mode 3

Figure 99: First three modes of a bar in traction

6.1.4 Bar in traction: orthogonality conditions

For bars in traction, the orthogonality conditions are given by:

∫ L

0
ρAUi Uj dx = δijµi

∫ L

0
EAU ′

i U
′
j dx = δijµiω

2
i
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Proof: Let us consider two different mode shapesUi andUj whereωi 6= ωj:

EAU ′′
i + ρAω2

i Ui = 0 (37)

EAU ′′
j + ρAω2

jUj = 0 (38)

we multiply (37) byUj and integrate from 0 toL, and multiply (38) byUi and integrate from 0 toL.

∫ L

0

(

EAU ′′
i + ρAω2

iUi

)

Uj dx = 0 (39)

∫ L

0

(

EAU ′′
j + ρAω2

jUj

)

Ui dx = 0 (40)

Integrating by parts, we have

∫ L

0
EAU ′′

i Uj dx =
[

EAU ′
iUj

]L

0
−
∫ L

0
EAU ′

iU
′
j dx

∫ L

0
EAU ′′

j Ui dx =
[

EAU ′
jUi

]L

0
−
∫ L

0
EAU ′

jU
′
i dx

The terms
[

EAU ′
iUj

]L

0

and
[

EAU ′
jUi

]L

0

are always equal to zero because atx = L andx = 0 we either haveU = 0 or U ′ = 0. We thus have

∫ L

0
EAU ′′

i Uj dx = −
∫ L

0
EAU ′

iU
′
j dx

∫ L

0
EAU ′′

j Ui dx = −
∫ L

0
EAU ′

jU
′
i dx

replacing in (39) and (40) we have:

∫ L

0

(

−EAU ′
iU

′
j + ρAω2

i UiUj

)

dx = 0 (41)

∫ L

0

(

−EAU ′
jU

′
i + ρAω2

jUjUi

)

dx = 0 (42)

Substracting (42) from (41), we have:

∫ L

0
ρA(ω2

i − ω2
j )Ui Uj dx = 0 i 6= j

which leads to
∫ L

0
ρAUi Uj dx = 0 i 6= j (43)

and defining

µi =

∫ L

0
ρAU2

i dx (44)
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(43) and (44) give the second orthogonality condition. We can rewrite (41):

∫ L

0
EAU ′

iU
′
j dx =

∫ L

0
ρAω2

i UiUjdx

and taking into account (43) and (44), we have:

∫ L

0
EAU ′

iU
′
j dx = 0 i 6= j

∫ L

0
EAU ′2

i dx = ω2
i µi

which is the first orthogonality condition.

6.1.5 Bar in traction: projection in the modal basis

Starting from the equation of motion

EA
∂2u(x, t)

∂x2
− ρA

∂2u(x, t)

∂t2
= −p(x, t)

we assume that the solution can be written as a function of themode shapes:

u(x, t) =

∞
∑

i=1

Ui(x)zi(t)

Plugging in the equation of motion, we get:

EA
∞
∑

i=1

U ′′
i zi − ρA

∞
∑

i=1

Uiz̈i = −p(x, t)

We multiply byUj and integrate from 0 toL:

∫ L

0

(

EA
∞
∑

i=1

U ′′
i zi

)

Uj dx−
∫ L

0

(

ρA
∞
∑

i=1

Uiz̈i

)

Uj dx =

∫ L

0
−p(x, t)Uj dx

and rearranging:

∫ L

0

(

EA
∞
∑

i=1

U ′′
i Uj

)

zi dx−
∫ L

0

(

ρA
∞
∑

i=1

UiUj

)

z̈i dx =

∫ L

0
−p(x, t)Uj dx

We can then use the orthogonality conditions to have

µiz̈i + µiω
2
i zi = Fi (45)

with

Fi =

∫ L

0
p(x, t)Ui dx

Equation (45) is the equation of motion of a one dof system where
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• µi is the modal mass

• ωi is the angular eigenfrequency

• µiω2
i is the stiffness

• Fi is the modal force

The solution of the equation of motion is therefore an infinite sum of the response of independent one
dof systems.

6.1.6 Bar in traction: particular solution

Following the same approach as for the mdof systems studied in the previous chapter, we assume

u(x, t) = U(x)eiωt

p(x, t) = P (x)eiωt

and replace in (36) to get

EA
d2U(x)

dx2
+ ρAω2U(x) = −P (x)

We perform a projection in the modal basis:

U(x) =
∞
∑

i=1

Ui(x)Zi

which leads to

µi(ω
2
i − ω2)Zi =

∫ L

0
P (x)Ui(x)

and

Zi =

∫ L
0 P (x)Ui(x)

µi(ω
2
i − ω2)

The harmonic solution is therefore:

U(x) =

∞
∑

i=1

∫ L
0 P (x)Ui(x)

µi(ω2
i − ω2)

Ui(x)

The solution is an infinite sum of sdof oscillator solutions,as shown in Figure 100.

|Z |1

f1

|Z |2

f2

+ + ... 1

Figure 100: The responseX(ω) is an infinite sum of the response of single dof systems with amplitude
Zi, i=1...n
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At this point, it is interesting to note that although we havemanaged to transform the equation of
motion into a set of independent equations, the number of equations is infinite, which poses a problem.
The solution widely used is to truncate the sum in order to include only then first mode shapes. The
choice ofn is dependent on the frequency range of interest for the computation. This is because a
single mode has a significant influence on the response only atfrequencies close to the associated
eigenfrequency where the magnitude of the response is very high. A good rule of practice is to choose
n such that

ω <
ωn

1.5

whereω is the maximum frequency in the frequency range of interest.This rule is purely empirical
and is intended to make sure that all the modes with an eigenfrequency contained in the frequency
band of interest are taken into account, with a safety margin. Figure 102 shows the example of a fixed-
fixed bar of lengthL excited at a point located at a distance ofL/5 and for which the displacement
in the horizontal direction is computed at the same point where the excitation is applied (Figure 101).
The exact solution is compared to a truncated solution wheren = 3. The agreement is very good in
the frequency band from 0 to 700 Hz. Note however that there are some discrepancies close to the
anti-resonances. This is due to the contribution of the modes at higher frequencies which are not taken
into account, and can be easily corrected with a so-called static correction. This is however out of the
scope of this course.

x

F

L

L/5

Figure 101: Fixed-fixed bar excited at L/5 in the horizontal direction
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Figure 102: Comparison between the exact solution and a solution obtained by truncating the expan-
sion in the modal basis to the third mode

6.1.7 Bar in traction: comparison with mdof systems

MDOF systems Bar in traction
Orthogonality conditions

ψT
i Mψj = δijµi

∫ L

0
ρAUi Uj dx = δijµi

ψT
i Kψj = δijµiω

2
i

∫ L

0
EAU ′

i U
′
j dx = δijµiω

2
i

Projection in the modal basis

µiz̈i + µiω
2
i zi = Fi

Fi = ΨTF Fi =

∫ L

0
p(x, t)Ui dx

Response to harmonic excitation

X(ω) =

n
∑

i=1

ψT
i F

µi(ω2
i − ω2)

ψi U(x) =

∞
∑

i=1

∫ L
0 P (x)Ui(x)

µi(ω2
i − ω2)

Ui(x)
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6.1.8 Beam in bending: equation of motion

The equation of motion for a beam in bending can be found by isolating a small part of the bar of
lengthdx as shown in Figure 103:

−T + p(x, t) dx+ T + dT = (ρAÿ) dx

wherep(x) is the vertical charge per unit of length. We know thatT = −EIyIII so that the equation
of motion can be rewritten:

dT

dx
= −EI d

4y

dx4
= ρAÿ − p(x, t)

or

EI
d4y

dx4
+ ρAÿ = p(x, t)

dx

T+dTT
p(x,t)x

y(x,t)

L

Figure 103: Equilibrium of a small part of a beam of lengthdx

6.1.9 Beam in bending: mode shapes and eigenfrequencies

Assumingy(x, t) = Y (x)eiωt, the mode shapes and eigenfrequencies are the solution of the equation
of motion with the right-hand side equal to 0:

EI
d4Y

dx4
− ρAω2Y = 0

which can be rewritten:
d4Y

dx4
− ρA

EI
ω2Y = 0

Let us define

ξ4 =
ρA

EI
ω2

we have
d4Y

dx4
− ξ4Y = 0

The characteristic equation is given by:
r4 + ξ4 = 0

It admits four roots

r1,2 = ±iξ
r3,4 = ±ξ
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and the general solution is written in the form

Y (x) = Acos(ξx) +Bsin(ξx) + Ccosh(ξx) +Dsinh(ξx)

The constantsA,B,C andD depend on the boundary conditions

For a simply supported beam we have:

Y (0) = A+ C = 0 ⇒ C = −A
Y ′′(0) = ξ2 (−A+ C) = 0 ⇒ A = 0, C = 0

The solution therefore reduces to

Y (x) = Bsinξx+Dsinhξx

and taking into account the boundary conditions atx = L we have:

Y (L) = B sin ξL+DsinhξL = 0 (46)

Y ′′(L) = ξ2 (−B sin ξL+DsinhξL) = 0 (47)

The system of equations admits a non trivial solution if the determinant is zero:

det

(

sin ξL sinhξL
− sin ξL sinhξL

)

= 0

which leads to
sin(ξL)sinh(ξL) = 0

Apart from the trivial solutionξ = 0, we have an infinite number of solutions corresponding to
sin ξL = 0 which is true for

ξL = nπ n = 1...∞
We have

ξ2L2 = ω

√

ρA

EI
L2

with ξL = nπ which gives for the eigenfrequencies

ωn =
n2π2

L2

√

EI

ρA

The mode shapes are obtained b replacingξL by nπ in (46) , which leads toD = 0, and therefore

Y (x) = sin
nπx

L

Mode shapes 1,5 and 10 are represented on Figure 104. This expression is identical to the mode-
shapes of a bar in traction, but the motion here is in the vertical direction. The eigenfrequencies are
proportional to the square root of the ratio of the bending rigidity EI and the mass per unit of length
ρA. The difference with the bar in traction is the fact that the eigenfrequency is proportional ton for
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a bar in traction and ton2 for a beam in bending. The eigenfrequencies are therefore equally spaced
in frequency for a bar in traction but not for a beam in bending.

L

n=1

n=5

n=10

Figure 104: Bending modes 1,5 and 10 for a simply supported beam

For a double cantilever beam we have:

Y (0) = A+ C = 0 ⇒ C = −A
Y ′(0) = ξ (B +D) = 0 ⇒ D = −B

So that the solution can be written

Y (x) = A(cos(ξx)− cosh(ξx)) +B(sin(ξx)− sinh(ξx))

Taking into account the boundary conditions atx = L we have:

Y (L) = (cosξL− coshξL)A+ (sinξL− sinhξL)B = 0 (48)

Y ′(L) = (−sinξL− sinhξL)A+ (cosξL− coshξL)B = 0 (49)

The system of equations admits a non trivial solution of

det

(

cosξL− coshξL sinξL− sinhξL
−sinξL− sinhξL cosξL− coshξL

)

= 0

which leads to

cosξL =
1

coshξL

This equations does not admit an explicit solution. One way to solve it is to do it graphically. The first
roots are represented on Figure 105.
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Figure 105: Roots of the equation allowing to compute the eigenfrequencies for a double cantilever
beam

Let us noteρn, n = 1, ...∞ with ρ = ξL, we have:

ρ2 = ξ2L2 = ω

√

ρA

EI
L2

and the eigenfrequencies are:

ωn =
ρ2n
L2

√

EI

ρA
n = 1, ...,∞

Note that a good approximation of the values ofρn is given by

cos ρ = 0 ⇒ ρn =
π

2
+ (n− 1)π

and the mode shapes are obtained by replacingξL with ρn in (48) which gives:

B =
− (cosρn − coshρn)

sinρn − sinhρn
A =

and the mode shapes are given by (up to a constant)

Yn(x) = (cos(ρn
x

L
)− cosh(ρn

x

L
) +

− (cosρn − coshρn)

sinρn − sinhρn
(sin(ρn

x

L
)− sinh(ρn

x

L
))

There exists an infinity of eigenfrequencies and mode shapes, as for all continuous systems. The mode
shapes of ordern = 1, 5, 10 are represented in Figure 106.
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n=5
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Figure 106: Mode shapes of a double cantilever beam (n = 1, 5, 10)

For a cantilever beam we have:

Y (0) = A+ C = 0 ⇒ C = −A
Y ′(0) = ξ (B +D) = 0 ⇒ D = −B

So that the solution can be written

Y (x) = A(cos(ξx)− cosh(ξx)) +B(sin(ξx)− sinh(ξx))

Taking into account the boundary conditions atx = L we have:

Y ′′(L) = (cos ξL+ coshξL)A+ (sin ξL+ sinhξL)B = 0 (50)

Y ′′′(L) = (sin ξL− sinhξL)A− (cos ξL+ coshξL)B = 0 (51)

The system of equations admits a non trivial solution of

det

(

cosξL+ coshξL sinξL+ sinhξL
sinξL− sinhξL −(cosξL+ coshξL)

)

= 0

which leads to
2 (1 + cosξLcoshξL) = 0

cosξL =
−1

cosh ξL

Again the solution cannot be solved analytically. Figure 107 represents the first roots of the equation.
Let us noteρn, n = 1, ...∞ with ρ = ξL, we have:

ρ2 = ξ2L2 = ω

√

ρA

EI
L2

And the eigenfrequencies are:

ωn =
ρ2n
L2

√

EI

ρA
n = 1, ...,∞
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The first two roots areρ1 = 1.876 andρ2=4.693. The next roots are approximated by

cos ξL = 0 ⇒ ξL = π/2 + (n − 1)π

The mode shapes are obtained by replacingξL with ρn in (50) which gives:

B =
− (cosρn + coshρn)

sinρn + sinhρn
A =

and the mode shapes are given by (up to a constant)

Yn(x) = (cos(ρn
x

L
)− cosh(ρn

x

L
) +

− (cosρn + coshρn)

sinρn + sinhρn
(sin(ρn

x

L
)− sinh(ρn

x

L
))

There exists an infinity of eigenfrequencies and mode shapes, as for all continuous systems. The mode
shapes of ordern = 1, 2, 5 are represented in Figure 108.
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Roots

Figure 107: Roots of the equation allowing to compute the eigenfrequencies for a cantilever beam
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n=1

n=2

n=5

Figure 108: Mode shapes of a cantilever beam (n = 1, 2, 5)

6.1.10 Beam in bending: orthogonality conditions

For beams in bending, the orthogonality conditions are given by:
∫ L

0
ρAYi Yj dx = δijµi

∫ L

0
EIY ′′

i Y
′′
j dx = δijµiω

2
i

Proof: Let us consider two different mode shapesYi andYj whereωi 6= ωj:

EIY IV
i + ρAω2

i Yi = 0 (52)

EIY IV
j + ρAω2

jYj = 0 (53)

we multiply (52) byYj and integrate from 0 toL, and multiply (53) byYi and integrate from 0 toL.

∫ L

0

(

EIY IV
i + ρAω2

i Yi
)

Yj dx = 0 (54)

∫ L

0

(

EIY IV
j + ρAω2

jYj
)

Yi dx = 0 (55)

Integrating twice by parts, we have
∫ L

0
EI Y IV

i Yj dx =
[

EI Y III
i Yj

]L

0
−
∫ L

0
EI Y III

i Y ′
j dx+

=
[

EI Y III
i Yj

]L

0
−
[

EI Y ′′
i Y

′
j

]L

0
+

∫ L

0
EI Y ′′

i Y
′′
j dx

The term
[

EI Y III
i Yj

]L

0
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is always equal to zero because we either haveY = 0 or T = 0 (which leads toT = −EIY III = 0)
at the boundaries of the beam, and the term

[

EI Y ′′
i Y

′
j

]L

0

is also always equal to zero because we either haveY ′ = 0 orM = 0 at the boundaries of the beam
(which leads to−EIY ′′ = 0). Finally, we obtain:

∫ L

0
EI Y IV

i Yj dx =

∫ L

0
EI Y ′′

j Y
′′
i dx

and in the same way
∫ L

0
EI Y IV

j Yi dx =

∫ L

0
EI Y ′′

i Y
′′
j dx

Therefore we have:
∫ L

0
EI Y ′′

j Y
′′
i + ρAω2

i YjYidx = 0 (56)

∫ L

0
EI Y ′′

i Y
′′
j + ρAω2

jYiYjdx = 0 (57)

Substracting (57) from (56), we have:

∫ L

0
ρA(ω2

i − ω2
j )Yi Yj dx = 0 i 6= j (58)

so that
∫ L

0
ρAYi Yj dx = 0 i 6= j (59)

and defining

µi =

∫ L

0
ρAY 2

i dx (60)

(59) and (60) give the second orthogonality condition.
We can rewrite (56):

∫ L

0
EI Y ′′

j Y
′′
i = −ρAω2

i YjYidx

and taking into account (59) and (60), we have:

∫ L

0
EI Y ′′

i Y
′′
j dx = 0 i 6= j

∫ L

0
EI (Y ′′

i )
2 dx = ω2

i µi

which is the first orthogonality condition.
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6.1.11 Beam in bending: projection in the modal basis

Starting from the equation of motion

EI
∂4y(x, t)

∂x4
+ ρA

∂2y(x, t)

∂t2
= p(x, t)

we assume that the solution can be written as a function of themode shapes

y(x, t) =

∞
∑

i=1

Yi(x)zi(t)

Plugging into the equation of motion, we have

EI
∞
∑

i=1

Y IV
i zi + ρA

∞
∑

i=1

Yiz̈i = p(x, t)

We multiply byYj and integrate from 0 toL:

∫ L

0

(

EI

∞
∑

i=1

Y IV
i zi

)

Yj dx+

∫ L

0

(

ρA

∞
∑

i=1

Yiz̈i

)

Yj dx =

∫ L

0
p(x, t)Yj dx

and rearranging

∫ L

0

(

EI

∞
∑

i=1

Y IV
i Yj

)

zi dx+

∫ L

0

(

ρA

∞
∑

i=1

YiYj

)

z̈i dx =

∫ L

0
p(x, t)Yj dx

the orthogonality conditions are then used to obtain

µiz̈i + µiω
2
i zi = Fi

Fi =

∫ L

0
p(x, t)Yi dx

As in the case of the bar in traction, the equation of motion istransformed into an infinite number of
equations of motions of a single dof. As discussed earlier, atruncation can be performed based on the
frequency band of interest for the computation. Below is a link to a video showing the first modes of
a cantilever beam.

Cantilever beam modes : http://www.youtube.com/watch?v=uBZqa851uvw

6.2 Complex structures

In many cases, the complexity of a structure does not allow one to use a beam or bar model in order
to get an accurate model. There exist also solution for rectangular plates, but this will not be treated
in this course. For more general cases, it is necessary to build an approximation by using numerical
models, the most widely used being the finite element method.In the finite element method, the
structure is divided in elements and contains nodes. For a general 3D model, there are three unknowns
for each node: the displacement in the 3 directions. The displacement field is therefore given by:
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u(x, y, z)
v(x, y, z)
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n
∑

i=1

uiφi(x, y, z)

n
∑

i=1

viφi(x, y, z)

n
∑

i=1

wiφi(x, y, z)











































whereu, v, w are the displacement in thex, y andz direction,n is the number of nodes in the model,
φi(x, y, z) are the shape functions andui, vi, wi are the nodal displacements of nodei. An example
of a finite element model of a bridge is presented in Figure 109.

Figure 109: Finite element model of the Pine Creek bridge lenticular truss bridge
(http://fynitesolutions.com)

Another example is given in Figure 110. The study concerns the interaction of vehicles with
the bridge. Once the finite element has been built, it is possible to obtain the stiffness and the mass
matrices. The size of these matrices depends on the number ofdofs of the structure modeled. For a
structure modeled with 3D elements, the number of unknowns is 3n wheren is the number of nodes.
The matricesK andM are therefore 3n x 3nmatrices. The undamped equations of motion are written
in a matrix form:

Mq̈ +Kq = F

where

q =































u1
v1
w1

u2
...
wn































is the vector of nodal unknowns. As this expression is identical to (27), the tools described in sec-
tion 5.1 can be used to solve the system of equations. Based ontheK andM matrices, the mode
shapes and eigenfrequencies can be computed numerically. Afew mode shapes of the bridge are
represented on Figure 111. From that point, the same strategy as described for mdof systems can be
followed to reduce the system of equations by projecting it in the modal basis. In general, the number
of dofs in the model is not linked to the necessary accuracy, but rather to the necessity to comply with
the complex geometry. For a bridge excited by wind and traffic, generally, only a few modes (up to
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20 modes) are of interest. The truncation is therefore very efficient as it allows to go from several
thousands of dofs to only 10-20 dofs.

Figure 110: Finite element model of a bridge and vehicles crossing the bridge [http://www.scielo.br]

Figure 111: A few modes of the bridge presented in Figure 110 [http://www.scielo.br]
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6.2.1 Modeling of damping

The equations of motion including the damping are written:

Mq̈ + Cq̇ +Kq = F

The matrixC is difficult to obtain. This is because, as we have seen in Section 3.4.3, there are various
sources of damping which are not easily quantified. Rayleighdamping is often used to build the
damping matrix, but is gives a very poor fit to experimental data (only two parameters, no physical
meaning). The damping matrix can be constructed using physical constitutive laws for the materials
including dissipative effects (viscoelasticity, friction ...). This is rarely done because in practice, a lot
of the damping comes from the joints which are usually represented by a simplified model for which
the damping is unknown. The most common approach is to project the equations of motion in the
modal domain and use the modal damping approach. The modal damping coefficients can either be
measured on the real structure if it is available, or given bya flat value, usually equal toξ = 0.01 for
lightly damped structures.

6.2.2 Tuned mass damper attached to continuous structures

Let us take the example of a simply supported beam to which a TMD is attached at a distanced from
the left-hand side (Figure 112). The TMD is replaced by a force fd and the displacement at this point
is notedyd.

k

m x2

Tuned mass damper

b

fdd

d

Figure 112: Simply supported beam equipped with a TMD

The projection on the modal basis leads to an infinite number of equations of the type:

µiz̈i + µiω
2
i zi = ψT

i F (61)

We make the assumption that around the eigenfrequencyωi, the displacement can be approximated
with a single mode:

x =

∞
∑

j=1

ψjzj ≃ ψizi

The displacement at the position of the TMD is therefore

y(d) = ψi(d)zi
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and we can write

zi =
y(d)

ψi(d)

Replacing in (61) and noting thatψT
i F = ψi(d)fd, we obtain:

µi
ψ2
i (d)

ÿ(d) +
µiω

2
i

ψ2
i (d)

y(d) = fd

which can be written
Mÿ(d) +Ky(d) = fd

if we define

M =
µi

ψ2
i (d)

K =
µiω

2
i

ψ2
i (d)

The equation of motion has been reduced to a single dof (assuming that the displacement can be
approximated by a single mode), and the formulae developed in Section 5.3 can be used. Figure 113
shows the example of the displacement in the middle of the beam excited by a force at the same
location, with and without the TMD. The TMD is efficient to damp the first mode. Note that it is
effective only in a narrow frequency band around the frequency to which it has been tuned.
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Figure 113: Displacement in the middle of the beam due to a force at the same location. Effect of the
TMD

The following movie illustrates the efficiency of a TMD to damp the first mode shape of a can-
tilever beam.

Beam with tuned mass damper: http://www.youtube.com/watch?v=fuCdZLQOrAw
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