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Harmonic excitation

The signal is in the form of a
sine or/and cosine function

Rigid rotating machine

|— Flexible mounts

F, = mew? cos(wt)
2

F, = mew” sin(wt)

Periodic excitation

The signal repeats itself
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Four stroke engine (https://gifer.com)
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Random excitation

There is no repetition in the signal

« Turbulent wind
« Waves in storms
 Traffic

« Earthquakes

Ground motion

Time

FREQUENCY CONTENT
OF SOURCES
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Example : pedestrian induced vibrations of footbridges

For one pedestrian walking/running at a regular pace,

Representative types of activity Range of applicability
Designation Definition Design activity [Actual activities Activity Structure type
rate rate [Hz)
walking. slow walking (ambling) ~ 1.7 - pedestrian structures (pedes-—
"walking" continuous ground contact 1.6 — 2.4 |normal walking ~ 2.0 trian bridges, stairs, piers,
fast, brisk walking ~ 2.3 etc.
- office buildings, etc.
running, slow running (jog) ~ 21 - pedestrian bridges
"running” discontinuous 2.0 - 3.5 |normal runnin ~ 2.5 on jogging tracks. etc.
ground contact fast running %sprint) > 3.0

From Vibration problems in structures’, H. Bachman, 1995

Example : pedestrian induced vibrations of footbridges
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Figure G.2: Forcing function from jumping on the spot with both feet
simultaneously with a jumping rate of 2 Hz (from [G.4])

Figure G.1: Forcing function resulting from footfall overlap during
walking with a pacing rate of 2 Hz (from [G.4])

From Vibration problems in structures’, H. Bachman, 1995
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Example : pedestrian induced vibrations of footbridges

The periodic force acting on the bridge can be expressed as :

F,(t) =G+ Z Ga;sin(2mifpt — ¢;)

i=1

G = weight of person

o = Fourier coefficient of the i harmonic

G = force amplitude of the it harmonic

f = activity rate (Hz)

o = phase lag of the i harmonic relative to the first harmonic
i = number of the i harmonic

n = total number of contribution harmonics

From ‘Vibration problems in structures’, H. Bachman, 1995
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Example : pedestrian induced vibrations of footbridges

Fourier coefficient and phase lag Design density

Representative Activity [persons/m ]
types of activity rate [Hz] | =y 51 a, Jz ay [

vertical 2.0 0.4 0.1 =n/2 0.1 nf2 | ~1
"walking" 2.4 0.5

forward 2.0 | 0.5(xy/p=0.1)[ 0.2

lateral 2.0 e = 0.1 azjp = 0.1
"running" 2.0 ..... 3.0 1.6 0.7 0.2 -

From Vibration problems in structures’, H. Bachman, 1995
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THE DISCRETE
FOURIER TRANSFORM

Discrete Fourier series

Let u(t) be a periodic function of period T

VY

u(t) can be decomposed into a discrete Fourier series of the form

o
a . 2
u(t) = ?0 + E lan, cos(nwot) + by, sin(nwot)| Wy = %
n=1

14
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Discrete Fourier series

Period T U(t)

cos(nwot) sin(nwot)

o3 et

15
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Discrete Fourier series

u(t) = % + Z [ay, cos(nwot) + by, sin(nwot)]

n=1

T
f u(t) sin(nwot)dt

Nl

2 (T 2 [T
ag = ffg u(t)dt a, = T~/[J u(t) cos(nwyt)dt by, =

l Amplitudes and phases

u(t) = do + Z dy, cos(nwot — ¢,) Fo(t) =G+ Z Gasin(2mifpt — &)
n=1 i=1

[Bachmanl]

1 { bn
do:@ dn:\/a%+b?21 d)n—tgl(_)

2 n
16
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Complex formulation

n=oc . ) . e . |
ﬂ(t) = Z Cneznwﬂ o = ?D = ?/ u(t)dt Cp = Tf u(t)e—znwotdt
0 0
n=—o00

¢ is complex and carries the phase and amplitude information of the n
component of the Fourier tfransform

. by,
o =g~ 2R = tan ! (—)

Qp

Cn and c_p, are complex conjugates so that ult) is real

a, — ib, a,, + ib,,
Cp = — C_p = —5

17
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u(t) = sin(2woet) + 0.5 sin(dwpt) 4+ 0.2 sin(9wot) wo = lrad/s
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THE CONTINUQUS
FOURIER TRANSFORM

From discrete to continuous

Time signal Discrete Fourier transform
0 T o 20, 30, e,
+—>
Aw=2x/T

Continuous Fourier transform

T o0 Aw—dw

22

22
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From discrete to continuous

e Period T tends to oo
e Discrete frequency step Aw = wy tends to dw

e Discrete frequency nwy tends to w

o = = E u(t)e Mol dgy
n T 7%

T oo
limpr oo Tep = limp_ o / ’ u(t)e"'””"tdt = f u(t)e*'i“’fdt =U(w)

wls

Continuous Fourier Transform of ul(t)
23

23

Direct and inverse Fourier transforms

Ulw) = limr—00 Tep = / u(t)e™ ™ dt = U(w)

n=00 n=00

. Ly . T LT,
ult) =limrooe Y cn€™ 0 =lmrose Y cnze™!
n=—oo n=—oo
iy W 1 [
. 0 i ;
= L”LmT%DO n;m (G,ET) ﬂetnwot — % /_DO U(w)e“‘”dw
oo .
U(w) :[ u(t)e ™" dt Continuous Fourier Transform
—00

_1
T or

u(t)

[se]
/ U(w)e™*dw  Continuous Inverse Fourier Transform
— 00

24

24

12



Vibrations : Sources

Frequency and angular frequency

Pulsation (rad/s) Frequency (Hz)

Ulw) = /_m u(t)e “'dt e U(f) = /_Oo u(t)e 27 I gy

w=2rf = dw = 2rdf

u(t) = %f:” Uw)etdw — —s u(t) :/_ U(f)emItdf

25
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EXAMPLES OF
CONTINUOUS FOURIER
TRANSFORMS
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Fourier transform of basic functions

u(®) (/)

! 8(f)

a(t) 1
cos(27 fot) w
sin(27 fot) w
Y. d(t—nT) % > ar-

28

F(o)

28

Fourier transform of an impulse

u(t)—H(t+a)—H(t—a)—{ 0

1

—a <t<0
lt| > a

U(f)

29

= f u(t)e 27Tt gt

a
— / e—z’27rft dt

-1
i
(ei27fa _ g—i2nfay
2im f
2sin(27 fa)
2nf

[e—iZTrft]a

—a

H(t+a)-H(t-a)
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Fourier transform of an impulse

2sin(27 fa)

2nf

sinc(r) =

30

/\/\/\r\_

= 2asinc(2fa)
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1
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0.6
sin(mx) .
T
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AN /\
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0.2

30

Fourier transform of an impulse

u(t)=H(t+a)-H(t-a),

T
0.8
0.6
0.4
0.2

0

-0.2

2a=0.2

U(f) IS

0.5

0.4

31
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Fourier transform of an impulse

H(t+a)-H(t-a) U(f) 4 /

2a=0.2
as02 0.5

0.4

0.3

0.2

0.1

m 05 o 05 it E \_//\\] 0 1\//\\/ 5 f

2a=1 -0.1

-0.2
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Link between impulse response and transfer function

Duhamel’s integral with harmonic excitation f(t) = Fe™t  a(t) = Xt

a(t) = Xe™' = / Fe“Th(t — 1)dr = f Fe“t=Th(r)dr

—0o0

= Feé“’tf h(t)e “"dr = Fe™'H(w)

X(w
H(w) = m The Fourier transform of h(t) is the tfransfer function

—

For a single degree of freedom, we have :

e*fwnt i X(w) _ 1 1
M0 = T ) T Ty T G i, — o

33

33
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The convolution theorem

Convolution in the time domain corresponds with a multiplication in the
frequency domain:

(1) * h(t)
Y(f)=X(f)-H(f)

<=

—
o~

S—
Il

Multiplication in the time domain corresponds to a convolution in the
frequency domain

34
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FOURIER TRANSFORMS
OF SAMPLED SIGNALS
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Sampling and aliasing

-In practice, vibration signals are recorded on computers af discrete time
steps At. This is called sampling

- Sampling at time intervals At can be seen as multiplying the continuous
function by a Dirac comb with spacing At

Continuous sine function

Equally spaced Dirac pulses

s/l \
. "
02] X
;
k.
=
e
%
? 02 04 06 08 1 02 04 08 08 1

) =
o8|
o Sampled sine function
o4
) |

|

36

B E-

36

Sampling and aliasing

Continuous Fourier Transform of a sampled signal using the convolution theorem

y(t) = x(t).h(t)
Y (f)=X(f) = H(f)
Example :
2(t) = sin(2r fot) — X (f) = o(f — fo) ; a(f + fo) Continuous function
n=oc ]_ n=oo
h(t) =Y 8(t—nAt) = H(f) = A > - %) Sampling function
37

37
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Sampling and aliasing

| sin(2w fot
M (27 fot)

06|

0.4

0.2 >

of
02
-04

t £ f, f
Equally spaced Dirac pulses
Equally spaced Dirac pulses / \

1/At

s/ \
oMo f

38
Sampling and aliasing
fs Equally spaced Dirac pulses
Jo<7g / o\
1/At
*
'fg fo f - fs 2f5 f
Usefull part of the spectrum
1/At
Periodic function
LA 2f, f 39
2
39
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Sampling and aliasing

fs Equally spaced Dirac pulses

fo>75 / o\

/At

-+, f, f

Aliasin
J 1/At

—
v

Overlap = aliasing

i), f 1 2f f 0

40

Discrete Fourier transform of sampled signals

Basic principle:

-Time interval [0 T], Nsamples, sampling time At

-Discrete Fourier transform computed at Nregular frequency | T b
intervals
A — 2r 27w The frequency
W= NAt T resolution dependson T
resulting in a frequency band [0 f,,,] with
Aw N 1
maw:N—:_:_: s
/ 2T T At /
and only the part below Ts s useful. The maximum frequency
2 depends on At 41

41
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Discrete Fourier transform of sampled signals

Remarks:

*Taking the DFT on a time interval [0 T] can therefore be seen as implicitly
assuming that the signal is periodic of period T.

* The DFT is exact only if the signal is periodic of period T, or if the signal is zero
before t=0 and after t=T.

*Due to the periodicity of the Fourier transform of a sampled signal, the DFT
needs to be computed only at NV frequencies, and the useful part of the
spectrum contains only N/2points and ranges from O to f/2.

*In practice, the DFT of sampled signals is computed using the 1 (Fast Fourier
Transform) algorithm.

42

42

Discrete Fourier transform in Matlab/Octave

The discrete Fourier transform is defined as :
I :
Cp = f/(} u(t) e oty
For a signal ut)sampled at Aregular time intervals (At) :

N
1 o
Cp ™ T E Atu(jAt) g inwoiAt
—

J
At J -
_ ?t S u(jAt) e ineosdt =®f Ft(u)
=0

Definition of FFT in Matlab/Octave

43

43
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Continuous Fourier transform in Matlab/Octave

The continuous Fourier transform is defined as :

U(f) = / u(t)e” @™t = limp_o Ty,

= limT%w%fﬁ(u) = (At) f ft(u)

44

PRACTICAL EXAMPLES
OF DFT OF SAMPLED
SIGNALS

44
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SDOF : DFT of impulse response

k=1N/m, m = 1kg, b=0.01Ns/m

1

- . . . L s -
T 0 100 200 300 400 500 600

At =0.1534s — f, = 6.519H 2
n = 4096
T =628s — Af = 0.001592H =z

Time(s) 8
f 5 /
2
Approximation of 10°
the transfer function g
in the frequency
band [0 f,/2]
0 1 2 3 4 5 6 46
Freq(Hz)

46

SDOF : response to random excitation

k=1N/m, m = lkg, b= 0.01Ns/m

s Input force signall
k LIJb

m| =

At =0.01534s — fs = 65.19Hz
n = 45056
T=691s - Af =0.00144H =z

-5
T 0 200 400 600 800

f Time(s)

15:  Qutput displacement signal

100;  FFT of output displacement signal

80

60

=
X
40 Resonance (0.159 Hz)
20
15 0 -
0 200 400 600 800 o \W2 04 06 o8 1 47
Time(s) Frq(Hz)
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Frequency analysis of Santa Cruz Earthquake

Santa Cruz 1989 Earthquake

At = 0.0055 — fs = 200H z
n = 10000
T =50s - Af =002Hz

Amplitude of FFT of ground motion

»
[A()I

map(t)
N

o

0 20 40 60 80 100
Frq(Hz)

0

0 10 20 30 40 50 60

48

Frequency analysis of engine vibrations

https://www.youtube.com/watch?v=371KjwIB_-c

49

49
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https://www.youtube.com/watch?v=3Z1KjwIB_-c
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Frequency analysis of engine vibrations

At = 50ps — fy = 20kHz
n = 100001
T=5s—>Af=02Hz

)
%u‘*—

[mide.com] M w0 s e

Time(s)

Acceleration signal (idle) FFT of idle engine acceleration

IAMI
o
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O'ZQJAW
- S . N A
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Time(s) Frq(Hz)
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Determining the natural frequency of an object with your phone

Auto-Scale

51

51
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