# VIBRATION SOURCES







# Free vibrations

#### Short initial excitation



3

### Forced vibrations

#### Continuous excitation

Harmonic force signal

Periodic force signal



Random force signal

3

#### Harmonic excitation

The signal is in the form of a sine or/and cosine function





5

6

5

### Periodic excitation







Four stroke engine (https://gifer.com)

#### **Random excitation**

There is no repetition in the signal

- Turbulent wind
- Waves in storms
- Traffic
- Earthquakes









#### Example : pedestrian induced vibrations of footbridges

For one pedestrian walking/running at a regular pace, the excitation is periodic



| R           | epresentative types of activi               | ty                           | Range of applicability                                          |                         |                                                                                                                               |  |
|-------------|---------------------------------------------|------------------------------|-----------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| Designation | Definition                                  | Design activity<br>rate [Hz] | Actual activities                                               | Activity<br>rate [Hz]   | Structure type                                                                                                                |  |
| "walking"   | walking.<br>continuous ground contact       | 1.6 - 2.4                    | slow walking (ambling)<br>normal walking<br>fast, brisk walking | ~ 1.7<br>~ 2.0<br>~ 2.3 | <ul> <li>pedestrian structures (pedes-<br/>trian bridges, stairs, piers,<br/>etc.)</li> <li>office buildings, etc.</li> </ul> |  |
| "running"   | running.<br>discontinuous<br>ground contact | 2.0 - 3.5                    | slow running (jog)<br>normal running<br>fast running (sprint)   | ~ 2.1<br>~ 2.5<br>> 3.0 | - pedestrian bridges<br>on jogging tracks, etc.                                                                               |  |

From 'Vibration problems in structures', H. Bachman, 1995

## Example : pedestrian induced vibrations of footbridges



T=0.5s 5.0 k\_G 4.0 0.0 E<sup>b</sup> [kN] 2.0 Contact t d = 0.72 kN 1.0 0 0 2 0.3 04 0.5 0.6 07 6 Time [s]

Jumping

Figure G.2: Forcing function from jumping on the spot with both feet simultaneously with a jumping rate of 2 Hz (from [G.4])

From 'Vibration problems in structures', H. Bachman, 1995

#### Example : pedestrian induced vibrations of footbridges

The periodic force acting on the bridge can be expressed as :

$$F_p(t) = G + \sum_{i=1}^n G\alpha_i \sin(2\pi i f_p t - \phi_i)$$

G = weight of person

 $\alpha_i$  = Fourier coefficient of the i<sup>th</sup> harmonic

- $G \alpha_i$  = force amplitude of the i<sup>th</sup> harmonic
- f<sub>p</sub> = activity rate (Hz)
- $\dot{\phi_i}$  = phase lag of the i<sup>th</sup> harmonic relative to the first harmonic
- i = number of the i<sup>th</sup> harmonic
- n = total number of contribution harmonics

From 'Vibration problems in structures', H. Bachman, 1995

#### Example : pedestrian induced vibrations of footbridges

| Representative    | Activity<br>y rate  | [Hz]              | Fourier coefficient and phase lag |                |                  |                | ase la | Design density<br>[persons/m²] |     |
|-------------------|---------------------|-------------------|-----------------------------------|----------------|------------------|----------------|--------|--------------------------------|-----|
| types of activity |                     |                   | αl                                | ø <sub>1</sub> | <sup>a</sup> 2   | ø <sub>2</sub> | α3     | ø <sub>3</sub>                 |     |
| "walking"         | vertical<br>forward | 2.0<br>2.4<br>2.0 | 0.4<br>0.5<br>0.5(\alpha_1/2=     | 0.1)           | 0.1<br>0.2       | π/2            | 0.1    | π/2                            | ~ 1 |
|                   | lateral             | 2.0               | $^{\alpha}1/2 = 0.$               | 1              | <sup>α</sup> 3/2 | = 0.1          |        |                                |     |
| "running"         | 2.0                 | 3.0               | 1.6                               |                | 0.7              |                | 0.2    |                                | -   |

From 'Vibration problems in structures', H. Bachman, 1995



**Discrete Fourier series** 

Let u(t) be a periodic function of period T



u(t) can be decomposed into a discrete Fourier series of the form

$$u(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right] \qquad \omega_0 = \frac{2\pi}{T}$$

# Discrete Fourier series



15

# **Discrete Fourier series**

$$u(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[ a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right]$$

$$a_0 = \frac{2}{T} \int_0^T u(t) dt \qquad a_n = \frac{2}{T} \int_0^T u(t) \cos(n\omega_0 t) dt \qquad b_n = \frac{2}{T} \int_0^T u(t) \sin(n\omega_0 t) dt$$

$$Amplitudes \text{ and phases}$$

$$u(t) = d_0 + \sum_{n=1}^{\infty} d_n \cos(n\omega_0 t - \phi_n) \qquad F_p(t) = G + \sum_{i=1}^n G\alpha_i \sin(2\pi i f_p t - \phi_i)$$

$$Bachmanl$$

$$d_0 = \frac{a_0}{2} \qquad d_n = \sqrt{a_n^2 + b_n^2} \qquad \phi_n = tg^{-1} \left(\frac{b_n}{a_n}\right)$$
16

16

## **Complex formulation**

$$u(t) = \sum_{n=-\infty}^{n=\infty} c_n e^{in\omega_0 t} \qquad c_0 = \frac{a_0}{2} = \frac{1}{T} \int_0^T u(t) dt \qquad c_n = \frac{1}{T} \int_0^T u(t) e^{-in\omega_0 t} dt$$

 $c_n$  is complex and carries the phase and amplitude information of the  ${\rm n^{th}}$  component of the Fourier transform

$$c_n = \frac{a_n - ib_n}{2} \quad d_n = \sqrt{a_n^2 + b_n^2} \qquad \phi_n = tan^{-1} \left(\frac{b_n}{a_n}\right)$$

 $c_n$  and  $c_{-n}$  are complex conjugates so that u(t) is real

$$c_n = \frac{a_n - ib_n}{2} \qquad c_{-n} = \frac{a_n + ib_n}{2}$$

17

17

## Examples



# Examples



19

# Examples





# From discrete to continuous



22

#### From discrete to continuous

- Period T tends to  $\infty$
- Discrete frequency step  $\Delta \omega = \omega_0$  tends to  $d\omega$
- Discrete frequency  $n\omega_0$  tends to  $\omega$

$$c_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} u(t) e^{-in\omega_0 t} dt$$

$$\lim_{T \to \infty} Tc_n = \lim_{T \to \infty} \int_{-\frac{T}{2}}^{\frac{T}{2}} u(t)e^{-in\omega_0 t} dt = \int_{-\infty}^{\infty} u(t)e^{-i\omega t} dt = U(\omega)$$

Continuous Fourier Transform of u(t)

23

# **Direct and inverse Fourier transforms**

$$U(\omega) = \lim_{T \to \infty} Tc_n = \int_{-\infty}^{\infty} u(t)e^{-i\omega t}dt = U(\omega)$$
$$u(t) = \lim_{T \to \infty} \sum_{n=-\infty}^{n=\infty} c_n e^{in\omega_0 t} = \lim_{T \to \infty} \sum_{n=-\infty}^{n=\infty} c_n \frac{T}{T} e^{in\omega_0 t}$$
$$= \lim_{T \to \infty} \sum_{n=-\infty}^{n=\infty} (c_n T) \frac{\omega_0}{2\pi} e^{in\omega_0 t} = \frac{1}{2\pi} \int_{-\infty}^{\infty} U(\omega) e^{i\omega t} d\omega$$

$$U(\omega) = \int_{-\infty}^{\infty} u(t)e^{-i\omega t}dt \qquad \text{Continuous Fourier Transform}$$
$$u(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} U(\omega)e^{i\omega t}d\omega \qquad \text{Continuous Inverse Fourier Transform}$$

24

# Frequency and angular frequency

Pulsation (rad/s)  

$$U(\omega) = \int_{-\infty}^{\infty} u(t)e^{-i\omega t}dt \qquad \longrightarrow \qquad U(f) = \int_{-\infty}^{\infty} u(t)e^{-i2\pi f t}dt$$

$$\omega = 2\pi f \Rightarrow d\omega = 2\pi df$$

$$u(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} U(\omega) e^{i\omega t} d\omega \qquad \longrightarrow \qquad u(t) = \int_{-\infty}^{\infty} U(f) e^{i2\pi f t} df$$

| - | - |
|---|---|
| 2 | F |
| ~ | - |
|   |   |





# Fourier transform of basic functions



28

28

Fourier transform of an impulse

$$\begin{split} u(t) &= H(t+a) - H(t-a) = \begin{cases} 1 & -a < t < 0\\ 0 & |t| > a \end{cases} \\ U(f) &= \int_{-\infty}^{\infty} u(t)e^{-i2\pi ft} dt & \text{H(t+a)-H(t-a)} \\ &= \int_{-a}^{a} e^{-i2\pi ft} dt & \text{H(t+a)-H(t-a)} \\ &= \frac{-1}{i2\pi f} \left[ e^{-i2\pi ft} \right]_{-a}^{a} & \text{H(t+a)-H(t-a)} \\ &= \frac{(e^{i2\pi fa} - e^{-i2\pi fa})}{2i\pi f} & \text{H(t+a)-H(t-a)} \\ &= \frac{2\sin(2\pi fa)}{2\pi f} & \text{H($$

# Fourier transform of an impulse





Fourier transform of an impulse



## Link between impulse response and transfer function

Duhamel's integral with harmonic excitation  $f(t) = Fe^{i\omega t}$   $x(t) = Xe^{i\omega t}$ 

$$x(t) = Xe^{i\omega t} = \int_{-\infty}^{\infty} Fe^{i\omega\tau}h(t-\tau)d\tau = \int_{-\infty}^{\infty} Fe^{i\omega(t-\tau)}h(\tau)d\tau$$
$$= Fe^{i\omega t}\int_{-\infty}^{\infty}h(\tau)e^{-i\omega\tau}d\tau = Fe^{i\omega t}H(\omega)$$

 $\longrightarrow$   $H(\omega) = \frac{X(\omega)}{F(\omega)}$  The Fourier transform of h(t) is the transfer function

For a single degree of freedom, we have :

$$h(t) = \frac{e^{-\xi\omega_n t}}{m\omega_d} \sin(\omega_d t) \longrightarrow \frac{X(\omega)}{F(\omega)} = \frac{1}{m} \left( \frac{1}{\omega_n^2 + 2i\xi\omega\omega_n - \omega^2} \right)$$
33

#### The convolution theorem

Convolution in the time domain corresponds with a multiplication in the frequency domain:

$$y(t) = x(t) * h(t)$$
$$Y(f) = X(f).H(f)$$

Multiplication in the time domain corresponds to a convolution in the frequency domain

$$y(t) = x(t).h(t)$$
$$Y(f) = X(f) * H(f)$$

34





#### Sampling and aliasing

-In practice, vibration signals are recorded on computers at discrete time steps  $\Delta t$ . This is called sampling

- Sampling at time intervals  $\Delta t$  can be seen as multiplying the continuous function by a Dirac comb with spacing  $\Delta t$ 



36

36

## Sampling and aliasing

Continuous Fourier Transform of a sampled signal using the convolution theorem

$$y(t) = x(t).h(t)$$
$$Y(f) = X(f) * H(f)$$

Example :

$$x(t) = \sin(2\pi f_0 t) \to X(f) = \frac{\delta(f - f_0) + \delta(f + f_0)}{2i}$$
 Continuous function

$$h(t) = \sum_{n=-\infty}^{n=\infty} \delta(t - n\Delta t) \to H(f) = \frac{1}{\Delta t} \sum_{n=-\infty}^{n=\infty} \delta(f - \frac{n}{\Delta t})$$
 Sampling function

# Sampling and aliasing







40

#### Discrete Fourier transform of sampled signals

Basic principle:

-Time interval [0 T], N samples, sampling time  $\Delta t$ 

-Discrete Fourier transform computed at Nregular frequency intervals

$$\Delta \omega = \frac{2\pi}{N\Delta t} = \frac{2\pi}{T}$$

The frequency resolution depends on T

resulting in a frequency band [0  $f_{\text{max}}$ ] with

$$f_{max} = N \frac{\Delta\omega}{2\pi} = \frac{N}{T} = \frac{1}{\Delta t} = f_s$$

and only the part below  $\frac{f_s}{2}$  is useful.

#### Discrete Fourier transform of sampled signals

#### Remarks:

\*Taking the DFT on a time interval [0 T] can therefore be seen as implicitly assuming that the signal is periodic of period T.

\* The DFT is exact only if the signal is periodic of period T, or if the signal is zero before t=0 and after t=T.

\*Due to the periodicity of the Fourier transform of a sampled signal, the DFT needs to be computed only at *N* frequencies, and the useful part of the spectrum contains only N/2 points and ranges from 0 to  $f_s/2$ .

\*In practice, the DFT of sampled signals is computed using the FFT (Fast Fourier Transform) algorithm.

Discrete Fourier transform in Matlab/Octave

The discrete Fourier transform is defined as :

$$c_n = \frac{1}{T} \int_0^T u(t) \, e^{-in\omega_0 t} dt$$

For a signal u(t) sampled at N regular time intervals ( $\Delta t$ ):

$$c_n \simeq \frac{1}{T} \sum_{j=0}^N \Delta t \, u(j\Delta t) \, e^{-in\omega_0 j\Delta t}$$
$$= \frac{\Delta t}{T} \sum_{j=0}^N u(j\Delta t) \, e^{-in\omega_0 j\Delta t} = \left(\frac{1}{N}\right) fft(u)$$

Definition of FFT in Matlab/Octave

# Continuous Fourier transform in Matlab/Octave

The continuous Fourier transform is defined as :

$$U(f) = \int_{-\infty}^{\infty} u(t)e^{-i2\pi ft}dt = \lim_{T \to \infty} Tc_n$$
$$= \lim_{T \to \infty} \frac{T}{N}fft(u) = (\Delta t)fft(u)$$

Converges to the continuous Fourier transform if T is large and  $\Delta t$  small





#### SDOF : DFT of impulse response



46



#### Frequency analysis of Santa Cruz Earthquake

Santa Cruz 1989 Earthquake





https://www.youtube.com/watch?v=3Z1KjwIB\_-c

49

48

#### Frequency analysis of engine vibrations



# Determining the natural frequency of an object with your phone



