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Beam –
Bar kinematics

Simple continuous systems : civil engineering
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Simple continuous systems : mechanical engineering

Beam –
Bar kinematics
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Cantilever beam

Simply supported beam

Equivalent continuous systems

EQUATIONS OF 
MOTION FOR BEAMS 
AND BARS
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Normal force
Longitudinal strain

For bars:

Boundary conditions for bars

- can be seen as an infinite number of small mass-spring systems in series
-> Infinite number of eigenfrequencies and mode shapes

- axial displacement u(x,t)

Equation of motion for bars
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p(x,t) = axial load per unit length on the bar
A = surface of the section
r = density

Equilibrium :

Equation of motion for bars

10

Bending moment Curvature

Shear force

For beams:

Rotation

Boundary conditions for beams
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- transversal displacement of the neutral axis y(x,t)

Equation of motion for beams
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p(x,t) = vertical load per unit length on the beam
A = surface of the section
r = density

Equilibrium :

Equation of motion for beams
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MODE SHAPES FOR 
BARS

N degrees of freedom (dofs) system = n eigenfrequencies

Continuous system = infinite number of DOFs = infinite number of eigenfrequencies

Eigenfrequencies
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General solution (p(x,t)=0) :

Characteristic equation: ! The variable is x not t

Mode shapes and eigenfrequencies for bars

General solution

A and B depend on the boundary conditions

Eigenfrequencies

Example : Bar fixed at x=0 and x=L

Mode shapes

Mode shapes and eigenfrequencies for bars
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Mode 2 

Mode 3

Mode 1 

Mode shapes and eigenfrequencies for bars

MODE SHAPES FOR 
BEAMS
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General solution (p(x,t)=0) :

Characteristic equation: ! The variable is x not t

Mode shapes and eigenfrequencies for beams

General solution

A, B, C and D depend on the boundary conditions

Example : Simply supported beam

Mode shapes and eigenfrequencies for bars

Eigenfrequencies Mode shapes
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Example 1: Simply supported beam

Mode shapes and eigenfrequencies for beams
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n=1

n=5 n=10

Mode shapes and eigenfrequencies for beams
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Example 2: Double cantilever beam

Mode shapes and eigenfrequencies for beams
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n=1

n=5 n=10

Mode shapes and eigenfrequencies for beams
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Example 3: Cantilever beam

Mode shapes and eigenfrequencies for beams
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n=1

n=5

n=2

Mode shapes and eigenfrequencies for beams
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Mode shapes and eigenfrequencies for beams

https://youtu.be/1Z-d_DlxVSQ

PROJECTION IN THE 
MODAL BASIS
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https://youtu.be/1Z-d_DlxVSQ
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Orthogonality :

Projection in the modal basis for bars

This equation corresponds to the equation of motion of a sdof system with
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The solution can be obtained by solving an infinite set of independent
equations of the type

Projection in the modal basis

29

30



Vibrations : Continuous systems

16

31

The solution is the sum of sdof oscillators :

In practice, truncation is needed …

Projection in the modal basis

is the last 
eigenfrequency used
in the truncated sum
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In practice :

The approximation can be
improved using static
correction

Rules for truncation : 
- depends on the frequency band of excitation
- depends on the frequency band of interest for the response

Truncated modal basis
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Orthogonality :

Projection in the modal basis for beams
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Orthogonality conditions

Projection in the modal basis

Discrete vs continuous systems

MDOF BARS BEAMS
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For proportional (global) damping models

Rayleigh damping

Loss factor Constant modal damping

Damping models

Modal damping For each mode
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