INTRODUCTION TO VIBRATIONS

Definition

Vibration refers to mechanical oscillations about an equilibrium point. The oscillations may be periodic such as the motion of a pendulum or random such as the movement of a tire on a gravel road.

Vibrations around us

Vibrator in cell phone

Sound

Tools

Shaver

3

4

Rotating machines

Tram

Mechanism of vibrations

Mechanism of vibrations

Traditionnally, vibrations have not been a big concern in civil engineering, except for high levels of vibrations due to earthquakes

But

- Vibration sources are increasing
- Comfort demands are increasing
- Health issues are appearing
- In some cases, high precision technologies require very low vibration levels
- New designs make some structures more susceptible to vibrations

Civil engineering structures have evolved towards <u>slender structures</u> with low level of damping, where vibrations become an issue

An old arch bridge

The Millau viaduct

This trend is also visible in other areas (automotive, aerospace) : reduction of weigth for optimal use of material results in higher levels of vibrations

Vibrations in civil engineering

The Millenium bridge in London

https://www.youtube.com/watch?v=gQK21572oSU

11

11

Vibrations in civil engineering

Vibrations of cables in cable-stayed bridges

https://www.youtube.com/watch?v=SsfQN1ilcGU

13

Vibrations in civil engineering

High rise buildings

https://www.youtube.com/watch?v=i1sHJRCJPS4

A (catastrophic) example: Takoma Narrows bridge, USA, 1940

https://www.youtube.com/watch?v=XggxeuFDaDU

Vibrations in mechanical engineering

- -Vibration sources are increasing
- -Comfort demands are increasing
- -Health issues are appearing
- -In some cases, high precision technologies require very low vibration levels
- -New designs make some structures more susceptible to vibrations

Reduction of weigth for optimal use of material results in higher levels of vibrations

Vibrations in mechanical engineering

Aeroelastic flutter in aircrafts

https://www.youtube.com/watch?v=pEOmCkZyXzk

Vibrations in mechanical engineering

Car vibration

https://www.youtube.com/watch?v=kuV7xyRETzU

Vibrations in mechanical engineering

Vibrations leading to failure

https://www.youtube.com/watch?v=ZcdYIkrQVzA

Vibration sources

EXTERNAL SOURCES

Civil engineering

Seismic activity Traffic Construction equipment Wind, Waves Pedestrians

Mechanical engineering

Road / track Aerodynamic loading Environment (building) Acoustic perturbation

INTERNAL SOURCES

Ventilation systems Elevator and conveyance systems Fluid pumping equipment Machines and generators Aerobics and exercise rooms – human activity

Engine Pump Generator Actuators Rotating elements (wheels, ...)

Undesirable effects of vibrations

- Fatigue
- Noise
- Comfort
- Health
- Performances
- ...
- (collapse)

https://commons.wikimedia.org/

23

Positive effects of vibrations

- High frequency vibrations to decrease friction in engines (formula 1)
- Electric toothbrush, sander
- Musical instrument, loudspeaker
- Vibrating seats

Engineering vibrations

The study of vibrations in objects/structures/systems is a 4 steps procedure :

- 1. Identify the source and type of excitation
- 2. Model the effects of the vibrations
- 3. Modify the design to reach desirable vibration levels
- 4. Use remedial measures if the desired vibration levels are not reached

Practical cases in civil engineering

Pedestrian induced vibrations of footbridges

Machinery induced vibrations in buildings

Vibrations of highrise buildings

Vibrations

caused by

traffic

27

Practical cases in mechanical engineering

Payload comfort in space launchers

Engine vibration

Car suspension

Aircraft tail/wing vibration

Fatigue of wind turbines

