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From SDOF to MDOF

MDOF systems in real life
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UNDAMPED RESPONSE

Mass matrix Stiffness matrix

Equations of motion
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Admits a non trivial solution if 

r2 is negative (K and M are positive definite matrices)

Free response
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If the system has n degrees of freedom, there exist n values of -2 for 
which this equation is satisfied. These are the n eigenvalues which
correspond to n eigenfrequencies

n eigen vectors  are associated to these eigenfrequencies. They
correspond to the n mode shapes of the structure

Generalized eigenvalue problem (-2)

The general solution is written in the form:

Free response
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Premultiply (1) by          ,(2) by        and substract taking into account
symmetry of K (                                         ) and M (                                         ) 
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Proof :

Property :

Mode shapes orthogonality
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Define

Matrix notation

Mode shapes orthogonality
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Second order equation in 2

Example of a 2 DOFs system
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Example of a 2 DOFs system
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Example of a 2 DOFs system
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Mode 1 Mode 2

Example of a 2 DOFs system
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Assume the following initial conditions

Example of a 2 DOFs system
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Resonance of MDOF systems

https://youtu.be/OaXSmPgl1os
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https://youtu.be/OaXSmPgl1os
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Harmonic excitation
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Response to harmonic excitation

Example of a 2 DOFs system

Resonance

Anti-resonance
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Example of a 2 DOFs system

(m=1kg, k = 1N/m)
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Projection in the modal basis

n independent equations of the type

Projection in the modal basis
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The solution can be obtained by solving a set of n independent equations of the type

This equation corresponds to the equation of motion of a sdof system with

Projection in the modal basis
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sdof oscillator solution

or

Harmonic excitation : modal basis solution
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The solution is the sum of sdof oscillators :

Harmonic excitation : modal basis solution
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Example of a 2 DOFs system
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(m=1kg, k = 1N/m)

Example of a 2 DOFs system
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(m=1kg, k = 1N/m)

Example of a 2 DOFs system
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DAMPED RESPONSE

28Damping matrix

Equations of motion

27

28



Vibrations : MDOF systems

15

29

Non trivial solution if

•Complex roots of the characteristic equation
-> Oscillatory functions with exponential envelope

•Complex eigen vectors = complex modeshapes
-> Not often used in practice in vibrations

Free response
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Mode shapes of the conservative system :

Projection on the real modal basis:

In general is not diagonal and the equations remain coupled but … 

or

Projection in the basis of the real mode shapes
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Rayleigh damping:

Often used as a simplifying assumption to decouple the equations but 
does not have a physical meaning

Modal damping
When damping is small, off-diagonal terms can be neglected leading to:

is the modal damping of mode i

Projection in the basis of the real mode shapes
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This equation corresponds to the equation of motion of a sdof system 
with

n independent equations of the type

Projection in the basis of the real mode shapes
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•Only two parameters to define the damping of all modes
->Overestimation at low and high frequencies
->Represents accurately the damping of two modes only

Rayleigh damping Modal damping

Link between Rayleigh and modal damping
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Harmonic excitation
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Response to harmonic excitation

Example of a 2 DOFs system

Damped resonances

No strict anti-resonance
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Example of a 2 DOFs system

(m=1kg, k = 1N/m)

b=0.01 N/ms

b=0.04 N/msb=0.2 N/ms
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Projection on modal basis

Modal damping hypothesis (small damping)

Sum of damped sdof oscillators

n decoupled
equations

Harmonic excitation : modal basis solution
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The solution is the sum of damped sdof oscillators :

Harmonic excitation : modal basis solution
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Example of a 2 DOFs system
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Example of a 2 DOFs system : projection in the modal basis

Modal damping coefficients
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k=1 N/m, m=1kg,     

Example of a 2 DOFs system

=10%

=2%

b=0.01 N/ms
b=0.04 N/ms
b=0.2 N/ms

=17.3%

=3.5%

=0.5%
=0.9%
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Example of a 2 DOFs system

The second mode is more damped
because in the first mode, the dashpot
between masses 1 and 2 is not 
dissipating energy
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Neglect off-diagonal terms

Validity of modal damping hypothesis

44
Comparison of exact (dotted line) and modal damping responses

Validity of modal damping hypothesis

k=1 N/m, m=1kg,     

b=0.01 N/ms
b=0.04 N/ms
b=0.2 N/ms

=14.4%

=2.9%

=0.72%

Modal damping
hypothesis is valid
when damping is small
(<10%), and away from
anti-resonance

=5%

=1%

=0.25%
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Impulse response

+ =

Higher frequency modes disappear faster in the impulse response

k=1 N/m, m=1kg,     
b=0.04 N/ms
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Impulse response

The impulse response decays faster with a higher damping.

k=1 N/m, m=1kg,     

b=0.01 N/ms
b=0.04 N/ms
b=0.2 N/ms
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Transient 
regime Steady-state 

regime

Harmonic excitation below resonance

k=1 N/m, m=1kg,     
b=0.04 N/ms
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Transient 
regime Steady-state 

regime

Harmonic excitation between the two resonance frequencies

k=1 N/m, m=1kg,     
b=0.04 N/ms
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Transient 
regime Steady-state 

regime

Harmonic excitation above the two resonance frequencies

k=1 N/m, m=1kg,     
b=0.04 N/ms
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Sine sweep excitation

k=1 N/m, m=1kg,     
b=0.04 N/ms

Resonances
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BASE EXCITATION

52

                 

  

                 

    
  

Equations of motion:

Base excitation of MDOF systems
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Matrix notations:

All developments for force excitation apply

Base excitation of MDOF systems
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k=1 kN/m, m=1kg,     
b=2 N/ms

Relative motion of 
second floor

Santa Cruz earthquake (1990)
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