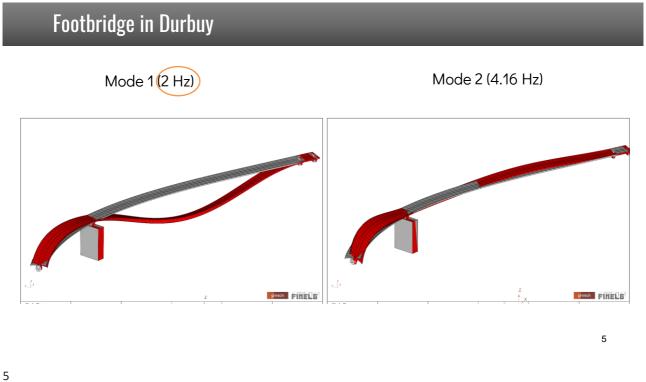

VIBRATIONS PROBLEMS

Footbridge in Durbuy

From [Bureau Greisch, 2020]

3

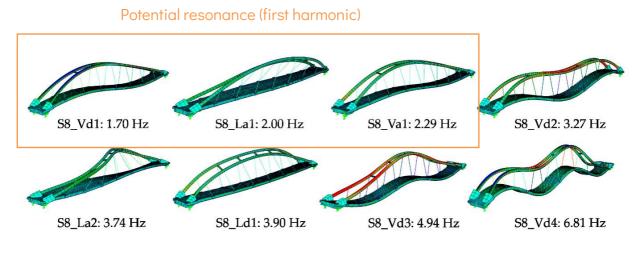

Vibration source

Representative types of activity						Fourier coefficient and phase lag					
Designation	Definition	Design activity rate [Hz]	Representative types of activity	Activity rate	[Hz]	α ₁	ø	α2	ø ₂	α3	ø ₃
"walking"	walking, continuous ground contact	1.6 - 2.4	"walking"	vertical forward lateral	2.0 2.4 2.0 2.0	$\begin{array}{c} 0.4 \\ 0.5 \\ 0.5(\alpha_{1/2}) \\ \alpha_{1/2} \end{array}$	/2 ^{=0.1)} 0.1	0.1 0.2 ^α 3/2	π/2 = 0.1	0.1	π/2
'running"	running, discontinuous ground contact	2.0 - 3.5	"running"	2.0	3.0	1.6		0.7		0.2	

From 'Vibration problems in structures', H. Bachman, 1995

Main frequencies of excitation from 1.5 to 3 Hz ! Harmonics !

4


Č

Arch footbridge S8 expressway – Poland

[A. Banas, R. Jankowski *Experimental and Numerical Study on Dynamics of Two Footbridges with Different Shapes of Girders,* Appl. Sci. 2020, 10, 4505; doi:10.3390/app10134505]

Mode shapes

7

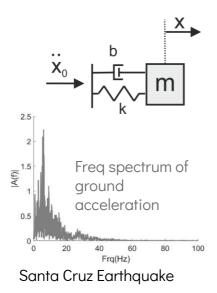
8

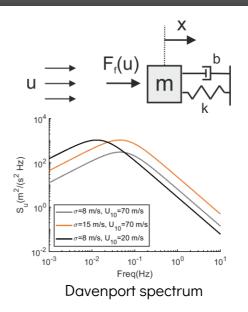
7

Pedestrian induced vibrations

https://www.youtube.com/watch?v=zpGZN8r2QxY

Pedestrian induced vibrations




https://www.youtube.com/watch?v=gQK21572oSU

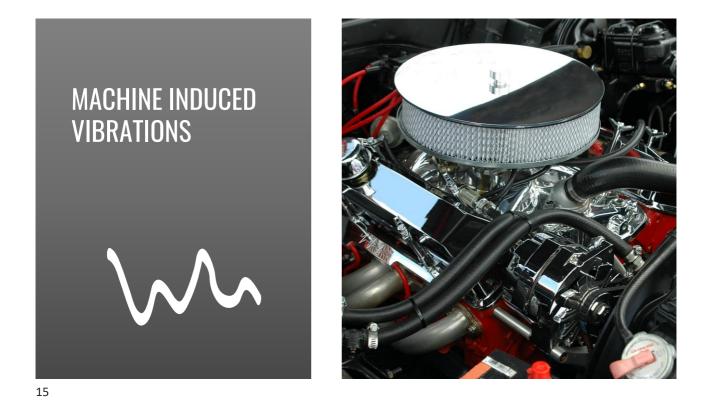
Wind and earthquake excitations

11

Wind excitation 303 m high-rise building, Guangzhou China Figure 16. Mode shapes for the first five orders from simulation via finite element method. Table 6. Results of natural frequencies of Leatop Plaza. Simulation (Hz) Difference (%) Mode No. Measurement (Hz) Mode Type 1st mode in X direction (sway) 0.183 0.164 10.4 1 2 0.182 0.167 8.24 1st mode in Y direction (sway) 3 4 5 0.429 0.683 0.388 9.56 1st mode in Z direction (torsion) 2nd mode in X direction (sway) 0.592 13.3 0.656 0.612 6.71 2nd mode in Y direction (sway)

Zhi Li, J. Fu, Y. He, Z. Liu, J. Wu, R. Rao and C.T. Ng, *Structural Responses of a Supertall Building Subjected to a Severe Typhoon at Landfall,* Appl. Sci. 2020, 10, 2965

Building swaying in the wind


https://www.youtube.com/watch?v=i1sHJRCJPS4

13

Building swaying after earthquake

https://www.youtube.com/watch?v=2t2xxKMN-Ic&t=230s

Machine induced vibrations

Washing machines

https://www.youtube.com/watch?v=SRbFxgezAX0

17

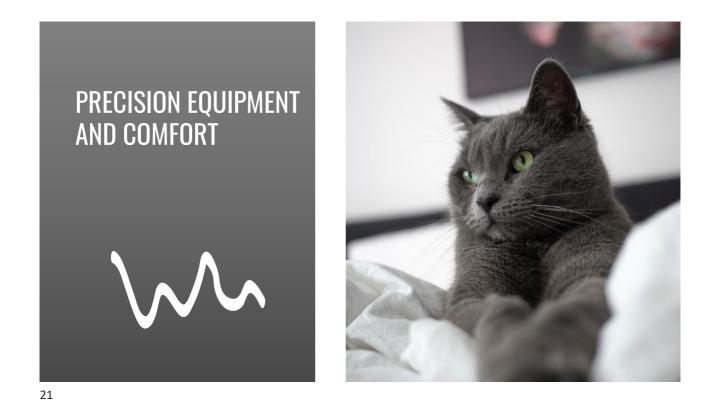
17

Harvester

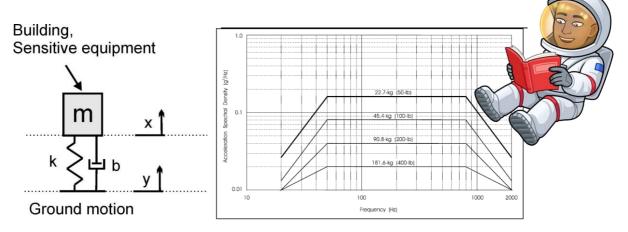
[Romaric BIAOU OLAYE]

Tractor engine

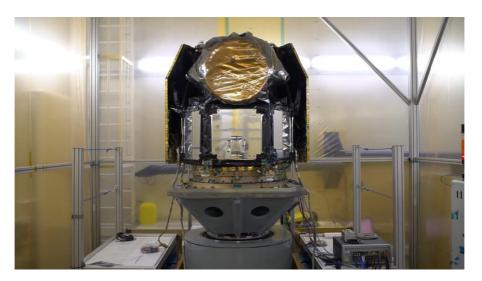
https://www.youtube.com/watch?v=7tJkI7dygfU


19

19


Helicopter ground resonance

https://www.youtube.com/watch?v=ZcdYIkrQVzA



Vibrations caused by the surroundings

GSFC Standard (Nasa)

Payload comfort in space launchers (satellites)

https://www.youtube.com/watch?v=104PEqeXk5M

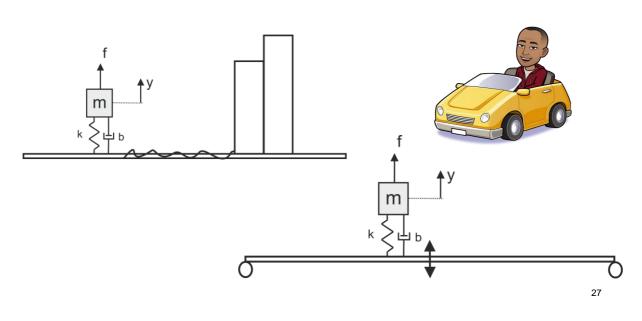
23

23

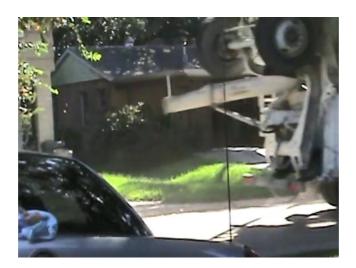
Comfort in sports cars

https://www.youtube.com/watch?v=5bsuar1vo2g

Precision microscope vibration


https://www.youtube.com/watch?v=9MFsymYmwLo

25

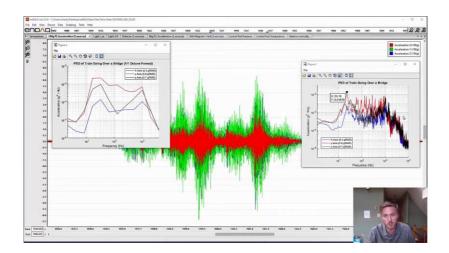


Vibrations caused by traffic

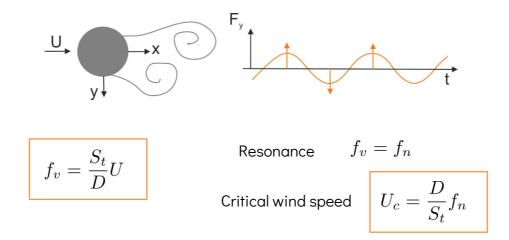
27

Vibrations caused by traffic

https://www.youtube.com/watch?v=ZAa6ehyIZ94


Vibrations caused by traffic

https://www.youtube.com/watch?v=ioSyeKusvE8


29

Vibrations caused by traffic

https://www.youtube.com/watch?v=ioSyeKusvE8

https://www.youtube.com/watch?v=YbZE_dgAqkc

https://www.youtube.com/watch?v=-JA6EfdDeck

33

33

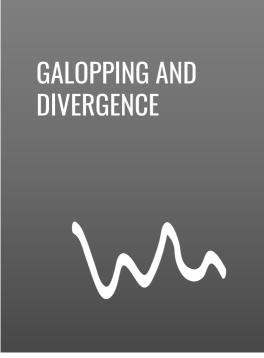
Vortex Induced Vibrations

https://www.youtube.com/watch?v=rlpUhgfEZPU

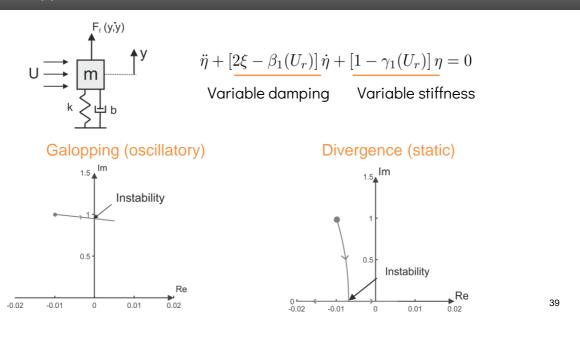
https://www.youtube.com/watch?v=oYegGVgvDb4

35

35


Vortex Induced Vibrations

https://www.youtube.com/watch?v=qROefSbKcms



https://www.youtube.com/watch?v=J21uZjFVPak

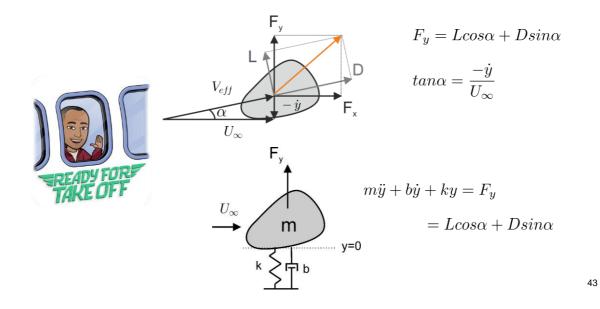
Galopping and divergence

39

Galopping

https://www.youtube.com/watch?v=GEGbYRii1d4

Divergence

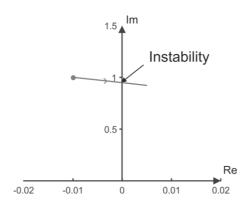


[From Vincent Denoël, ULiège]

Single mode flutter

43

Single mode flutter

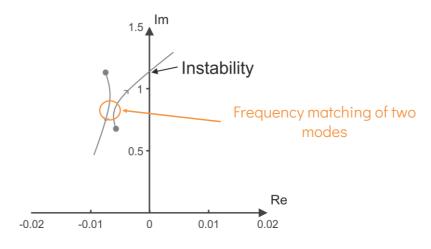

$$\begin{split} m\ddot{y} + b\dot{y} + ky &= L\cos\alpha + D\sin\alpha \\ &\simeq L + D\alpha \\ &\simeq (L_0 + \frac{dL}{d\alpha}\alpha) + (D_0 + \frac{dD}{d\alpha}\alpha)\alpha \\ &\simeq L_0 + (\frac{dL}{d\alpha} + D_0)\alpha \\ &\simeq L_0 + (\frac{dL}{d\alpha} + D_0)\frac{-\dot{y}}{U_\infty} \\ m\ddot{y} + \left(b + \frac{1}{U_\infty}(\frac{dL}{d\alpha} + D_0)\right)\dot{y} + ky = 0 \\ &\qquad D = \frac{1}{2}tC_D\rho U_\infty^2 \\ m\ddot{y} + \left(b + \frac{1}{2}t\rho(\frac{dC_L}{d\alpha} + C_D)U_\infty\right)\dot{y} + ky = 0 \end{split}$$

Can be negative and lead to zero damping at critical speed

Single mode flutter

$$m\ddot{y} + \left(b + \frac{1}{2}t\rho\left(\frac{dC_L}{d\alpha} + C_D\right)U_{\infty}\right)\dot{y} + ky = 0$$

Can be negative and lead to zero damping at critical speed


45

46

45

Stability for MDOF systems

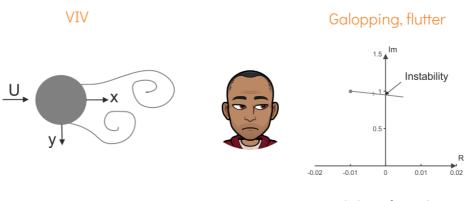
- Single mode flutter (galopping)
- Coupled mode flutter

Vibrations problems

Flutter in Tacoma Narrows bridge

https://www.youtube.com/watch?v=XggxeuFDaDU

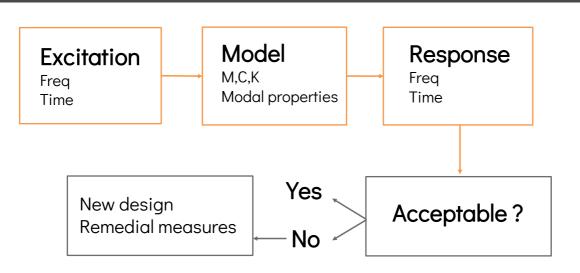
47


Aeroelastic flutter in aircrafts

Aeroelastic flutter in aircrafts

https://www.youtube.com/watch?v=pEOmCkZyXzk

VIV vs instabilities



- Resonance
- Amplitude limited by damping •
- Instability of a pole
- Unlimited amplitude (zero damping) ٠

Re

49

Summary

50