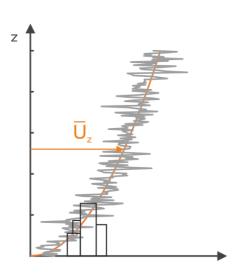


Wind excitation profile

Constant wind and turbulence



Wind forces:

3

3

Aerodynamic forces

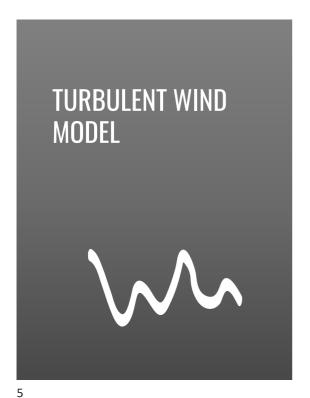
Constant flow

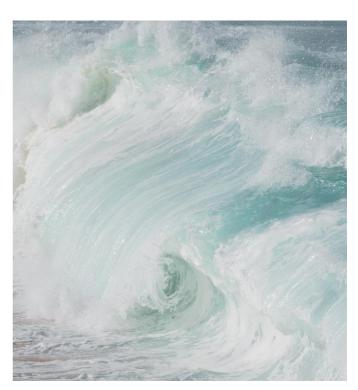
- Constant force
- Dynamic vortex excitation
- Self-excited vibrations
 - Galopping
 - Divergence
 - Flutter

Dynamic force

resonance

4





_

Stochastic wind speed model

Wind speed is assumed to be a stationnary gaussian process characterized by:

A mean $U=rac{1}{T}\int_0^T v_{tot}dt$ $v_{tot}=U+u(t)$ u has zero mean

A standard deviation $\sigma_u^2 = \frac{1}{T} \int_0^T u^2(t) dt$

A power spectral density (PSD) $\underline{S_u(f) \div |\tilde{U}(f)|^2} \qquad \sigma_u^2 = \int_{-\infty}^{\infty} S_u(f) df$

Frequency dependent

6

Energy Spectral density and Power Spectral Density

Energy spectral density (ESD):

$$\int_{-\infty}^{\infty} u(t)^2 dt = \int_{-\infty}^{\infty} |\tilde{U}(f)|^2 df \qquad \qquad \text{Using Parseval's theorem}$$
 ESD (energy/Hz)

For stationnary gaussian processes, ESD is not bounded

Power spectral density (PSD):

$$lim_{T\to\infty}\frac{1}{T}\int_{-\infty}^{\infty}u(t)^2dt=\int_{-\infty}^{\infty}\Biggl|lim_{T\to\infty}\frac{1}{T}|\tilde{U}(f)^2\Biggr|df$$

$$S_u(f)\quad \text{PSD (Power/Hz)}$$

7

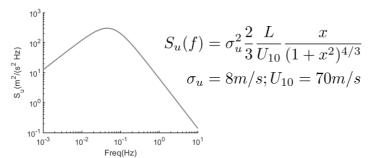
Power Spectral Density and Standard Deviation

$$\begin{split} \sigma_u^2 = lim_{T\to\infty} \frac{1}{T} \int_0^T u^2(t) dt &= \int_{-\infty}^\infty S_u(f) df \\ &= 2 \int_0^\infty S_u(f) df \end{split}$$
 If u(t) is real

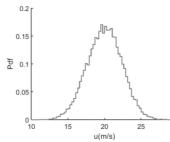
→ When the PSD is known, the standard deviation is known

8

Davenport Spectrum



(s) 0 -5 -10 0 Time(s)



Non-dimensional PSD

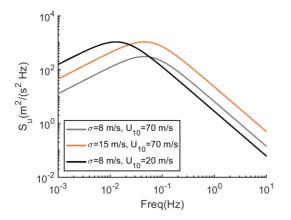
$$\frac{fS_u(f)}{\sigma_u^2} = \frac{2}{3} \frac{x^2}{(1+x^2)^{4/3}}$$

$$x = \frac{fL}{U_{10}} \quad \begin{array}{ll} \text{Non-dimensional} \\ \text{frequency} \end{array}$$

L=1200 m (turbulence length scale) U₁₀ =mean speed at 10m

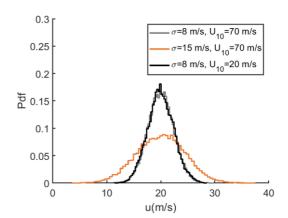
9

Davenport Spectrum



Higher wind speeds

Higher frequencies

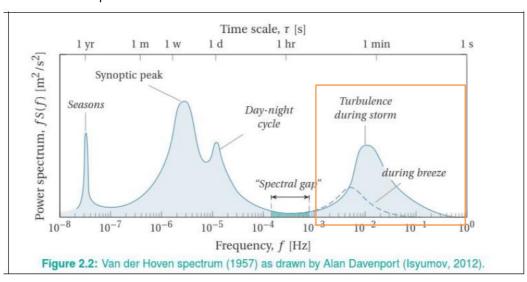


 $\begin{array}{c} \text{Higher standard deviation} \\ \hline & \text{Wider histogram, higher S}_{u} \end{array}$

10

Eurocode Spectrum

Van der Hoven Spectrum



11

Eurocode Spectrum

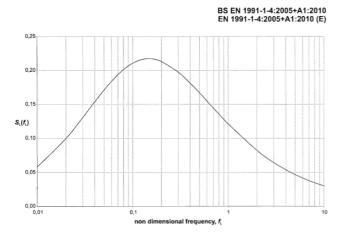


Figure B.1 —Power spectral density function $S_L(f_L)$

$$S_L(z,n) = \frac{nS_v(z,n)}{\sigma_v^2}$$

$$= \frac{6.8f_L(z,n)}{(1+10.2f_L(z,n))^{5/3}}$$

$$f_L(z,n) = \frac{nL(z)}{v_m(z)}$$

n = frequency (Hz)

Eurocode annex B1

12

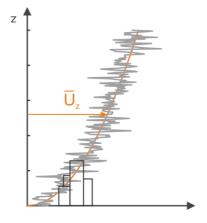
11

Influence of height

Turbulence intensity

$$I_u = \frac{\sigma_u}{U}$$
 $I_v = \frac{\sigma_v}{V}$ $I_w = \frac{\sigma_w}{W}$

- Mean velocities increase with height
- Turbulence is quasi-constant with height

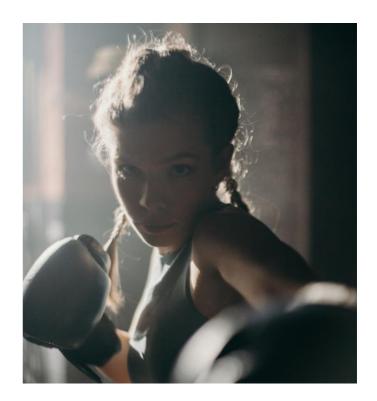


$$I_u = \frac{1}{\ln(\frac{z}{z_0})}$$

Turbulence intensity decreases with height

13

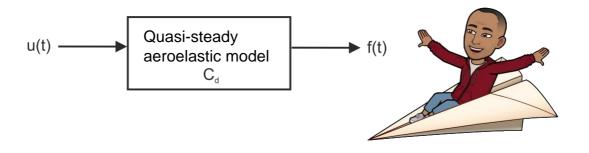
13



From wind velocity to wind forces

$$f_{tot}(t) = \frac{1}{2}\rho C_d \Omega \left[U + u(t) \right]^2 \simeq \frac{1}{2}\rho C_d \Omega U^2 + \rho \underline{C_d \Omega U u(t)}$$

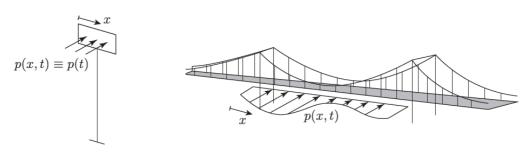
$$f_{turb}(t)$$



15

Aerodynamic admittance

Pressures are not uniform, and not in phase on large structures

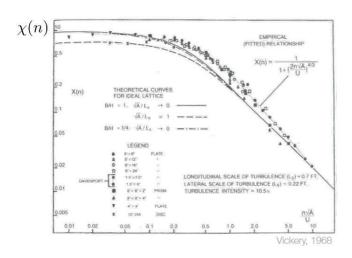


The total force is reduced Admittance χ

16

15

Aerodynamic admittance



Vickery's law

$$\chi(n) = \frac{1}{1 + \left(\frac{2n\sqrt{A}}{U}\right)^{4/3}}$$

Non-dimensional frequency

Admittance decreases with

- Size of the building
- Frequency of turbulence

Admittance increases with

• Mean wind velocity

17

17

Aerodynamic admittance in codes

	Expressions of GWL-AAF
ASCE 7	$\chi(f) = R_H R_B (0.53 + 0.47 R_D)$
	$R_l = 1/\eta - 1/2\eta^2 (1 - e^{-2\eta})$, $\eta > 0$; $R_l = 1$, $\eta = 0$
AS1170.2	$R_H, \eta = 4.6 fH/V_{\overline{Z}}; R_B, \eta = 4.6 fB/V_{\overline{Z}}; R_D, \eta = 15.4 fD/V_{\overline{Z}}$
	$\chi(f) = \frac{1}{\left(1 + 3.5 fH / \overline{V}_H\right) \cdot \left(1 + 4 fB / \overline{V}_H\right)}$
NRCC	, , , , , , , , , , , , , , , , , , , ,
	$\chi(f) = \frac{1}{(1+8 fH/(3\overline{V_u})) \cdot (1+10 fB/\overline{V_u})}$
RLB-AIJ	, , , , , , , , , , , , , , , , , , , ,
	$\chi(f) = \frac{0.84}{(1 + 2.1 fH / \overline{V}_H) \cdot (1 + 2.1 fB / \overline{V}_H)}$
ъ.	
Eurocode	$\chi(f) = R_H R_B$
	R_H and R_B are the same as those in ASCE7.

Eurocode annex B

 R_{H} , R_{B} take into account a specific mode shape

18

Summary

