

Actran overview

Jonathan Jacqmot jj@fft.be

Information

- On computer at ULB (Linux), software is installed in /serveur/logiciels/actran/Actran_2021.1/
- To launch Actran VI:
- > /serveur/logiciels/actran/Actran_2021.1/bin/actranvi

• You can download and install Actran student edition on your computer from:

https://www.mscsoftware.com/page/actran-student-edition

Actran general overview

Introduction to Actran

- Actran is an acoustic simulation software package:
 - Based on Finite Element Method
 - Able to solve vibro-acoustic and aeroacoustic problems
 - With efficient implementation and highly scalable solver
- Actran is:
 - Extensively used by engineers around the world for various applications
 - Validated against experiments
 - Supported by a team of acoustic simulation experts

Typical engineering questions

- Noise prediction
 - Will there be a noticeable sound radiation?
 - What is the expected sound pressure level (SPL)?
 - What are the resonant frequencies (= acoustic modes)?
 - Will the sound change with operating conditions?
 - How about directivity?

Typical engineering questions

- Noise reduction what can we do to reduce the noise?
 - Geometrical changes?
 - Decoupling of parts?
 - Decrease sources/excitation?
 - Absorbing materials?
 - Foams, trims, multi-layer composites
 - Change the flow conditions?

Typical engineering questions

- Sound is not always a problem!
 - Efficient radiation of HiFi components
 - Sound design of consumer products
 - Musical instruments
 - Sport cars

Ferrari exhaust line

• Ferrari is using Actran to optimize the components of an exhaust line

Aircraft nacelle acoustic treatments

- Compute the acoustic radiation from the turbo fan engine
- Design acoustic treatments
- Automated liner optimization program

Turbo fan engine in its nacelle

Auralisation of truck cabin noise

Reference (higher frequencies)

10 | hexagonmi.com | fft.be

Auralisation of truck cabin noise

Actran Organization

Actran is a solver

Finite element basics

- Actran is based on the finite element method
- Discretization of complex geometry in nodes and elements → finite element mesh
- Resolution of the system for all nodes according to the relationships between each node

Direct Frequency Response

- The vast majority of configurations are modelled using a Direct Frequency Response (DFR) analysis
- It computes:
 - the response of an acoustic system
 - to an **excitation** at the **specified frequencies**
 - for all finite element nodes
- The following equation system is solved by Actran:

$$\begin{aligned} (\mathbf{K} + i\omega\mathbf{C} - \omega^2\mathbf{M})\mathbf{x}(\omega) &= \mathbf{F}(\omega) \\ \text{System} & \text{Unknown} & \text{Load} \end{aligned}$$

- with Pulsation $\omega = 2\pi f$
 - stiffness matrix K
 - damping matrix C
 - mass matrix M

Frequency response results (1/2)

- A Direct Frequency Response computes the response of an acoustic system to an excitation at specified frequencies
- The solution computed by a Direct Frequency Response at 1000Hz corresponds to the acoustic propagation of one or several excitations pulsating at 1000Hz
- Results are output in **frequency domain** (real and imaginary part)

• Example: frequency response of a monopole pulsating at 1000Hz (slow phase animation)

Frequency response results (2/2)

- Direct Frequency Response provides a
 harmonic response in frequency domain
- For a monopole pulsating at 1000Hz:
 - Equivalent to a source pulsating harmonically for an infinite amount of time
 - Effect of the monopole pulsation is fully propagated through space (no transition as for time domain simulation)

• **Time domain** simulation of a monopole pulsating at 1000Hz:

Pressure at t=0.02s (20 pulsations)

Solution on the computation domain is equivalent to DFR results with phase=0

Actran Graphical User Interface

Actran is supported by a Graphical User Interface (GUI)

Model Set-up

Computation

ActranVI overview

Ribbon

- Complete and organized layout
- Guided analysis set-up and postprocessing operations using ribbon storytelling

	St	oryline			
File Home Mesh Analysis Run R Import Import	Results Tools View Help Topologies	Measure Info Mesh Quality Mesh Info Picking Options Panel Options Panel	Rode Node Subelement		
File Home Mesh Analysis Run Run Import New New Materials Import Materials Analysis Utility Materials Materials	Results Tools View Help Topologies	Coupling Surface Interface More Connectors	Acoustic Treatments Structure More More Various	Image: Ward of the second s	Partitions Partitions

Actran analysis: data tree panel nodes

Direct Frequency Response Analysis parameters and objects

Actran analysis: edit objects properties

ActranVI properties window

- Only parameters with * are mandatory
- Assigning a domain is always mandatory
- You can close or open any properties window anytime: input parameters will be taken into account

🏶 dshell 2 🗙			×
Thin Shell	▼ dshell	2	• 🕲
Component D	efinition		
*Material 🔶			
*Thickness		Ŧ	
			m
Power Evaluation			
			- U
▼ Orientation &	Direction		
▼ Additional Out	Itputs		
▼ Pre-Stress			
▼ More			
🔺 Domain Assig	Inment		
V 0D V 1D V	2D ✔ 3D Enter text to match		😻 🛷

Errors in ActranVI

- You may come across error messages when pre-processing, running or post-processing a model
- **Read carefully** the error message and try to analyze what happens:
 - Is it a Warning or a Fatal message?
 - Can I find where the error is and correct it?

Examples

• Analysis pre-processing:

• Analysis export :

Actran concepts and inputs

Actran concepts

What information do we need to model a system?

Element set (also called PID)

- An *element set* (or PID) is a group of finite elements:
 - Having the same dimension
 - Identified by a unique identification number
- A *topology* is separated in different *element sets* to be able to define the different parts of the model
- The element set's content depends on:
 - Either the structure of the mesh imported in ActranVI
 - Or the way the mesh was created in ActranVI

opologies

TOPOLOGY antenna.bdf 1

Domains

- A *domain* is a collection of *element sets*
 - Described by a domain name
- **Domains** are the **link** between the mesh and the Actran analysis
 - Used to group and organize *element sets* for complex meshes
 - For simple meshes, there can be one single element set per domain

Boundary conditions

 A boundary condition characterizes a known restriction or an excitation on the finite elements

• Boundary conditions are linked to domains

Components

- A *component* characterizes the numerical properties and the physical interpretation of a domain of finite elements
 - For instance: different components available for porous modelling, corresponding to different mathematical formulations
- Components are linked to a material and one or several domains

Materials

- A *material* describes the physical properties of a component
- A *material* has a **type** and a **list of properties**
 - Example of type:
 - Fluid
 - Isotropic Solid
 - Example of properties for a Fluid:
 - Speed of Sound
 - Density

Air at 15 degrees 1 × Fluid Material × Air at 15 degrees 1 * Unit System m - kg - s (SI) × ↔ €
Sound Speed 340 m s ⁻¹ . C Fluid Density
1.225 kg m ⁻³
Default : 0.0 € ✓ Aerodynamic Fluid Properties
 Viscothermal Fluid Properties Used In

Analysis parameters

- An *analysis parameter* is any other parameter influencing the computation of the model
 - Frequencies to be solved
 - Post-processing indicators
 - Solver technology used

Actran concepts overview

Actran launch and outputs

Launch the Actran analysis in ActranVI

Run 🗙	
🔺 Input	
Analysis	
Direct Frequency Response 1	
Command line options	
	(D)
Validation mode	
light	
Available : 24980 MB per process (1)	
22402 [MD]	
🔺 Parallelism	
Multi-processing	
Multi-threading	
🐬 Validate	► Run

Information on computation process

Ac Actran 2021

- A window pops-up with information related to the different steps of the analysis:
 - The command line read by Actran
 - **Real-time information** about different steps involved in the computation
 - Resource consumptions
 - The warning or error messages (if any)
- This information can also be retrieved in the *.log file (in the report directory)

Н	Parameter iterator 0			(time:	00s,	total:	47s,	mem:	183MB)
	Finalize all post-processing o	perations		(time:	00s,	total:	47s,	mem:	184MB)
	done (Finalize all post-p	rocessing operations)		(time:	00s,	total:	47s,	mem:	184MB)
	done (Parameter iterator 0)		(time:	00s,	total:	47s,	mem:	184MB
	Clearing all topologies, analys	es, materials and tables		(time:	00s,	total:	475,	mem:	184MB
	done (Clearing all topolog:	ies, analyses, materials an	d tables)	(time:	00s,	total:	47s,	mem:	179MB
	done (Post-run sequence.)			(time:	00s,	total:	47s,	mem:	179MB)
	Writing run report			(time:	00s,	total:	475,	mem:	182MB)
	Local resources:								
	total physical memory	32691MB							
	total disk space								
	 current directory 	476GB							
	 scratch directory 	476GB							
	Resources usage:								
	free disk space								
	 current directory 	312GB							
	- scratch directory	312GB							
	free physical memory	20384MB							
	peak process memory	31/MB	A Dealtheast Markahara Acous	TTCC 1 User sealers D					
	A separate Direct Erequency December (Dieu in the t:\\Users\\mra	ACOUS	siics_i_noin_speaker_k	TODOU	(\input	`		
	dope (Writing rup report)	2021.01.14-14.24.05 direct	ory	(time:	005	total.	486	mem.	
	done (writeling full report)			(cime:	005,	corar:	405,	mem:	13-HND /
	End of computational job - Thu 1	an 14 14-24-54 2021							
	"[donewith C:\Users\mra\Desktop\Wo	rkshop ACOUSTICS 1 Horn spe	aker Ribbon\input\Direct	Erequency Response 20	21.01	.14-14.	24.05	.edat	1.
1	Chief and a large	—	—	—				alst	11-1-

Actran output : FRF and Maps

Computation

Post-processing

Frequency Response Function (FRF): results at all the frequencies for a given node

Maps: results at all the

nodes for a given frequency

*.plt

*.nff

PLTviewer

Going further...

• Demo

Information

- On computer at ULB (Linux), software is installed in /serveur/logiciels/actran/Actran_2021.1/
- To launch Actran VI:
- > /serveur/logiciels/actran/Actran_2021.1/bin/actranvi

• You can download and install Actran student edition on your computer from:

https://www.mscsoftware.com/page/actran-student-edition