VIB: 1DOF

Number of participants: 50

When describing a 1. the complex amplit contains		17 correct answers out of 23 respondents
the phase information only	4%	1 vote
the amplitude and the frequency information	17%	4 votes
both the phase and ✓ amplitude information	74%	17 votes
the frequency information only	4%	1 vote

2. The natural frequency of a massspring system depends on

21 correct answers out of 27 respondents

the mass of the system 89% 24 votes

the stiffness of the system	89%	24 votes
the force with which we excite the system	4%	1 vote
the location of the force applied to the system	4%	1 vote

	3. The natural frequency of a mass-spring system increases when		21 correct answers out of 27 respondents
	the mass increases	11%	3 votes
~	the stiffness increases	85%	23 votes
~	the mass decreases	89%	24 votes
	the stiffness decreases	11%	3 votes

When an undamped 1DOF system is moved from the equilibrium position and then released, it oscillates freely at a frequency

19 correct answers out of 21 respondents

Lower than its
natural frequency

0%

0 votes

~	Equal to its natural frequency	90%	19 votes
	Higher than its natural frequency	10%	2 votes

When excited with a harmonic force at a frequency below the natural frequency of an undamped 1DOF system, the motion of the mass is

18 correct answers out of 21 respondents

180° out-of-phase with the excitation	0%	0 votes
90° out-of-phase with the excitation	10%	2 votes
30° out-of-phase with the excitation	5%	1 vote
in-phase with the excitation	86%	18 votes

When excited with a harmonic force at a frequency above the natural frequency of an undamped 1DOF system, the motion of the mass is

19 correct answers out of 23 respondents

✓ 180° out-of-phase with the excitation	83%	19 votes
90° out-of-phase with the excitation	4%	1 vote
60° out-of-phase with the excitation	0%	0 votes
randem an undamped 1 when excited with 7. at a frequency corratural frequency, the motion is	a harmonic force esponding to its	3 votes 25 correct answers out of 25 respondents
in phase with the excitation force	0%	0 votes
180° out-of-phase with the excitation force	0%	0 votes
✓ infinite	100%	25 votes

8. It is possible to break a wine glass with your voice by

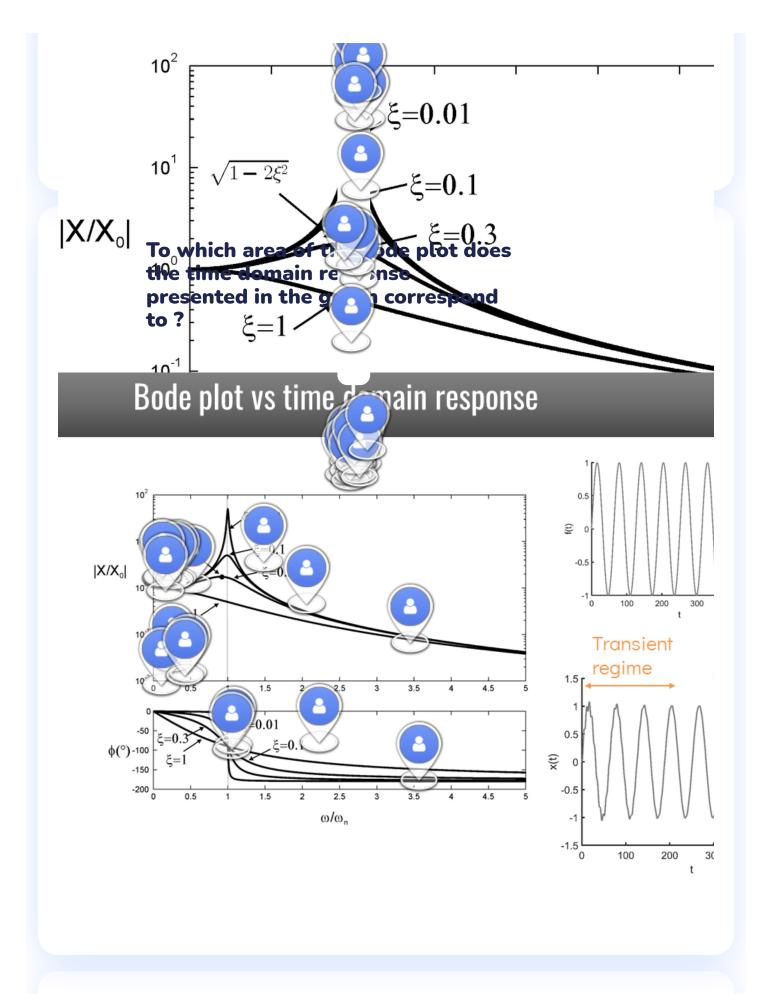
24 correct answers out of 25 respondents

	exciting it at very high frequency	4%	1 vote
	exciting it at low frequency	0%	0 votes
~	Have you watched the vide exci coming to fclass? its natural frequencies	eos before 96%	21 respondents 24 votes
	Yes	81%	17 votes
	No	19%	4 votes

When damping increases in a 1DOF system, the amplitude of vibration when excited near its natural frequency

19 correct answers out of 22 respondents

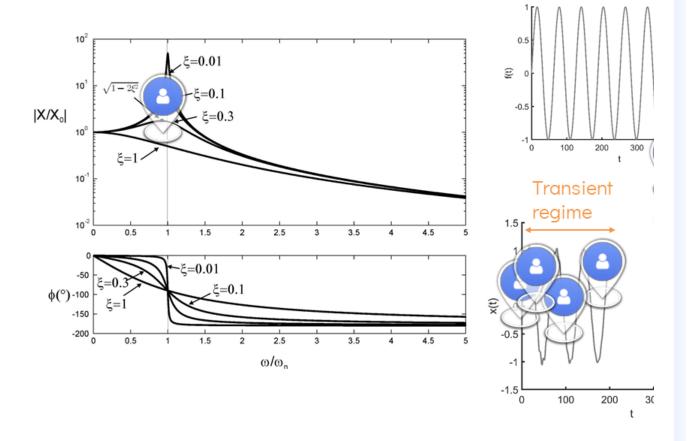
	increases	9%	2 votes
~	decreases	86%	19 votes
	remains constant	5%	1 vote


When damping increases in a 1DOF system, the amplitude of vibration when excited far from its natural frequency

13 correct answers out of 21 respondents

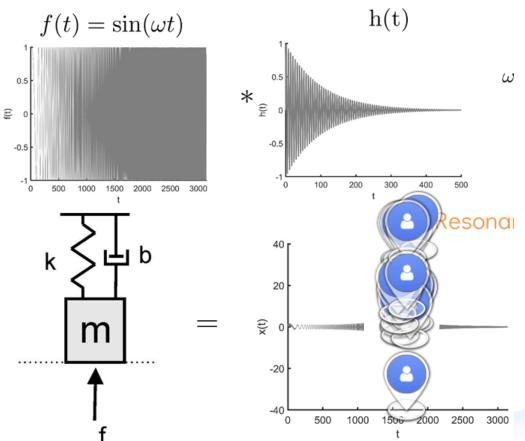
decreases	19%	4 votes
increases	19%	4 votes
✓ remains constant	62%	13 votes

12. Where is the resonant frequency of the 1DOF system on this diagram?


24 respondents

Which part of the time domain 14. response actually corresponds to the hypothesis in the Bode plot?

16 respondents


Bode plot vs time domain response

For a sine sweep excitation, which 15. area of the time domain response represents resonance?

16 respondents

