VIB : MDOF systems

Number of participants: 29

 \checkmark

The mode shapes and eigenfrequencies of a determined by (K and stiffness and mass m	d a system are d M are the atrices)	17 correct answers out of 22 respondents
Calculating the eigenvalues of the stiffness matrix K of the system	5%	1 vote
solving a generalized eigenvalue problem of the type (K- w^2M) {Phi} = 0	77%	17 votes
Calculating the eigenvalues of the mass matrix M of the system	14%	3 votes
Calulating w=K/M	5%	1 vote

2. If a system has n deg it has	rees of freedom,	20 correct answers out of 23 respondents
2n natural frequencies	0%	0 votes
n natural frequencies	87%	20 votes
(n + the number of excitations) natural	13%	3 votes

	frequencies it depends on the type of system	0%	0 votes
	3. The mode shapes are orth with respect to the	ogonal	3 correct answers out of 22 respondents
~	stiffness matrix	45%	10 votes
~	mass matrix	41%	9 votes
	damping matrix	36%	8 votes
	The interest of projecting 4. equations of motion in the domain is to:	the modal	18 correct answers out of 24 respondents
	The interest of projecting 4. equations of motion in the domain is to: reduce the number of equations to solve	the modal	18 correct answers out of 24 respondents 4 votes
~	The interest of projecting 4. equations of motion in the domain is to: reduce the number of equations to solve decouple the equations of motion and facilitate solving them	the modal 17%	18 correct answers out of 24 respondents 4 votes 18 votes

	5. Which of these quan quantity for a given	itities is a global structure	4 correct answers out of 22 respondents
•	the eigenfrequency	68%	15 votes
	the anti-resonance frequency	9%	2 votes
•	the damping coefficient	45%	10 votes

6.	An anti-resonance happens when	18 corre
	••	1 () 1

18 correct answers out of 21 respondents

The contribution to the response of the two close modes as equal amplitude and equal phase	5%	1 vote
The contribution to the response of the two close modes has equal amplitude and opposite phase	86%	18 votes
The displacement is zero for the two closest modes	10%	2 votes

one	0%	0 votes
three	0%	0 votes
five	88%	15 votes
an infinity	12%	2 votes

If this system is excited with an harmonic force applied to the

10. bottom mass, whose frequency is close to the first natural frequency, the motion will correspond to 9 correct answers

out of 15 respondents

The first mode shape where the two masses move in phase	60%	9 votes
The second mode shape where the two masses move out of phase	27%	4 votes
A combination of the two modeshapes	13%	2 votes

If this system is excited with an harmonic force applied to the bottom mass, whose frequency is the average of the first and second natural frequencies of the system, the motion will correspond to

9 correct answers out of 16 respondents

13. Where is the anti-resonance of the
2 DOFs system on this graph ?20 respondents

9 of 15

10/18/2022, 4:41 PM

Firefox

No answers in this question

How would you extract the first 16. natural frequency from the impulse response ?

0 respondent

No answers in this question

This is the impulse response of a damped two dofs system. Is it

17. possible to extract the information on the second natural frequency and damping from this curve ?

13 correct answers out of 19 respondents

Yes, you can see the response of the second mode very

12 of 15

10/18/2022, 4:41 PM

clearly.

Yes, while you might not see it well, all information on the second mode is also contained in this response	68%	13 votes
No, impulse responses show only the response from one mode at a time	26%	5 votes

This is the time domain response of a damped 2 DOFs system under sine

18. sweep excitation. Where do you see the resonances on the time domain response ?

20 respondents

~	proportional to the applied acceleration	44%	7 votes
	inversely proportional to the applied acceleration	25%	4 votes
	proportional to the applied displacement	31%	5 votes