\checkmark

VIB : Finite Elements

Number of participants: 25

1. A finite element model with N degrees of freedom has		14 correct answers out of 18 respondents
N eigenfrequencies and mode shapes	78%	14 votes
2N eigenfrequencies and mode shapes	6%	1 vote
an infinity number of eigenfrequencies and mode shapes	17%	3 votes
It depends on the frequency band and location of the excitation	0%	0 votes
2.The damping matrix for Rayleigh damping is given by13 correct answer out of 15 respondent		13 correct answers out of 15 respondents
C = constant	7%	1 vote

✓ (C = alpha K + beta M	87%	13 votes
(C = alpha omega K	7%	1 vote
3	B. For a global viscous dampin the modal damping coefficie	g model, ent is	9 correct answers out of 14 respondents
ا ۲ ۲	linearly oroportional to the frequency	64%	9 votes
i K f	nversely proportional to the frequency	21%	3 votes
i f	ndependent of the frequency	14%	2 votes

The use of a constant material loss4. factor for damping leads to modal damping coefficients

3 correct answers

out of 7 respondents

which depend linearly on the frequency and the loss factor	43%	3 votes
which are constant with the frequency equal to the loss factor divided by 2	43%	3 votes

6. When using local damping models

1 correct answer out of 5 respondents

	the damping matrix in the modal domain remains diagonal	40%	2 votes
~	the damping matrix in the modal domain is not diagonal	20%	1 vote
۶	the damping matrix can be made ructures which undergo base Ziagexcitation, the mode shapes are damcomputed) correct apswes out of 0 respondent
~	damping can be Meigletted Wifen Bood where the equal for imposed	0% 0%	0 votes 0 votes
	In free-free boundary conditions	0%	0 votes