VIB: Vibration sources and Fourier Analysis

Number of participants: 27

 I have watched the video on vibration so coming to the class 	ources before	0 respondent
Yes	0%	0 votes
No	0%	0 votes
Partly (I fell asleep)	0%	0 votes
2. After watching the video I think that		11 correct answers out of 22 respondents
✓ I understood most of the content	50%	11 votes
I understood the general concepts but did not grasp the mathematics	50%	11 votes
I did not understand the concepts nor the mathematics	0%	0 votes
3. The following are examples of free mec	hanical vibrations	8 correct answers out of 24 respondents
✓ A bell ringing	67%	16 votes
A worker using a jack hammer	29%	7 votes
The bar of a football goal vibrating after being hit by a ball	71%	17 votes

	/ibrations due to a spinning washing nachine	29%	7 vote
4	I. Which of the following statements are tr	ue?	11 correct answe r out of 21 respondent
	A harmonic excitation is a special case of a periodic excitation	86%	18 vote
	A periodic excitation is a special case of a narmonic excitation	19%	4 vote
	The period of a random signal is much smaller than for an harmonic one	19%	4 vote
	A random force signal has an infinite period	57%	12 vote
·	periodic narmonic	52% 76%	13 vote
/ р	periodic	52%	13 vote
	andom	8%	2 vote
6	6. Any rotating machine produces a		18 correct answe out of 23 responden
h	narmonic force	22%	5 vote
/ р	periodic force	78%	18 vote
r	andom force	0%	0 vote
	When the rotational speed of a machine i frequency of the forces produced	ncreases. the	15 correct answer

✓ Increases proportionally	65%	15 votes
Decreases proportionally	0%	0 votes
Increases with the square of the rotational speed	26%	6 votes
Decreases with the square root of the rotational speed	9%	2 votes

8. The force applied by a pedestrian was constant speed on a bridge is	alking or running at	20 correct answers out of 25 respondents
harmonic	20%	5 votes
periodic	80%	20 votes
random	0%	0 votes

9. The main frequency of excitation for walking pedestrians is around

17 correct answers out of 19 respondents

4 of 10 10/18/2022, 4:40 PM

the time domain to the frequency domain		
It provides information about the main ✓ frequencies of excitation which could cause structural resonance	81%	out of 21 respondents 17 votes
The signal is more compact in the frequency domain	0%	0 votes
It is easier to add signals in the frequency domain	19%	4 votes
13. The continuous Fourier transform appl	ies to	12 correct answers out of 18 respondents
✓ any type of signal	67%	12 votes
periodic signals only	22%	4 votes
harmonic signals only	6%	1 vote
it depends on the type of excitation of the system	6%	1 vote
14. The continuous Fourier transform of a	rectangle (pulse)	10 correct answers out of 16 respondents
a cosine function	19%	3 votes
a sine function	19%	3 votes
✓ a sinc function	63%	10 votes
a complex function which cannot be computed analytically	0%	0 votes
15. For a SDOF system (and MDOF), the Fo	ourier transform	2 correct answers out of 19 respondents

~	allows to extract the information about the natural frequency	32%	6 votes
	cannot be computed analytically	0%	0 votes
~	is the transfer function X(w)/F(w)	79%	15 votes
	16. Convolution in the time domain correspo	onds to	19 correct answers out of 22 respondents
~	multiplication in the frequency domain	86%	19 votes
	convolution in the frequency domain	9%	2 votes
	deconvolution in the frequency domain	5%	1 vote
	division in the frequency domain	0%	0 votes
	17. The continuous Fourier transform of a sa	ampled signal is	7 correct answers out of 20 respondents
	Discrete and periodic	50%	10 votes
~		50% 35%	10 votes 7 votes
~	Discrete and periodic Continuous and periodic Discrete with the same number of samples as the original signal		
•	Continuous and periodic Discrete with the same number of	35%	7 votes
•	Continuous and periodic Discrete with the same number of samples as the original signal	35%	7 votes 3 votes
~	Continuous and periodic Discrete with the same number of samples as the original signal 18. Aliasing happens when The sampling frequency is too high with respect to the frequency content of the	35% 15%	7 votes 3 votes 12 correct answers out of 20 respondents

19. YouTube (camera shutter speed and frame rate match helicopter's rotor)

0 respondent

camera shutter speed and frame rate match helicopter's rotor

20. When using Fast Fourier Transform on sampled signals, you can increase the frequency resolution by

0 correct answer out of 15 respondents

decreasing the time step of the sampling signal, keeping the total measurement time constant

60%

9 votes

increasing the time step of the sampling signal, keeping the total measurement time constant

40%

6 votes

increasing the measurement time,✓ whatever the time step of the sampling signal

0%

0 votes

21. When using DFT, the time step of the sample signal has an influence on

7 correct answers out of 18 respondents

The frequency resolution of the DFT 33% 6 votes

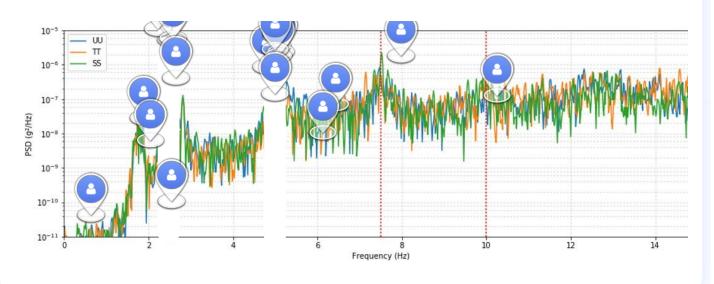
7 of 10 10/18/2022, 4:40 PM

 ✓ The maximum frequency of the DFT
 39%
 7 votes

 It has no influence on the DFT
 28%
 5 votes

Suppose the sampling frequency of the accelerometer 22. on your smartphone is 200 Hz. Up to what frequency can you measure acceleration signals?

18 correct answers out of 19 respondents


200 Hz 5% 1 vote

✓ 100 Hz 95% 18 votes

It depends on the length of the measurement 0% 0 votes

Following acceleration measurements show a real world structure responding to a particular vibration. Can you identify the frequency at which the highest loads are coming from?

20 respondents

24. Where do you think these frequencies are coming from?

5 respondents

8 of 10 10/18/2022, 4:40 PM

Turbulence flow

Unbalanced loads

Résonance

Vibration from outside

Walking

25. VID_20190503_223348.mp4

0 respondent

We see people dancing and jumping to music.

This time-frequency plot or waterfall plot shows how

the Fourier spectrum of an excitation source can vary over time. Do you have an idea which machine this is from?

O respondent

No answers in this question