

DESIGNING A MODAL TEST 50 THE IDEAL TEST -50 10 20 30 50 Consider our structure is a simple beam *floating in space* The modes of this system are -5 10 20 30 • The 6 Rigid body modes (X,Y,Z, Yaw, Roll, Pitch) • The structural dynamics modes (a.k.a. flexible modes) Infinite number 20 30 . These are of interest 50 20 Vehicle structures 12-11-2024 | 17

OUTPUT MEASUREMENTS LASER DOPPLER VIBROMETER

- Alternative to the accelerometer, does not introduce added mass
- Measures vibration based on the Doppler effect
- Can be used as a roving output measurements by pointing the laser at different points on the structure
 - Fixed Input Roving Output

MODAL HAMMER OR SHAKER		
Hammer	<u>Shaker</u>	
• Low cost : hammer + 1 accelerometer	• High cost : expensive shaker + multiple sensor	
• No physical connection = no dynamic interaction	 Shaker is connected to the system, can influence dynamics. 	
Only single accelerometer adding mass	 Added mass effect of the large number of accelerometers 	
Only impact /impulse inputs	 Controlled input, can be designed for optimal properties. Improved repeatability and Signal to Noise ratio 	
• Short setup time, experiment time proportional to the number of locations	 Longer setup time, shorter experiment time. Or installed bigger range of tests 	
Poor for non-linear structures	Can be used for non-linear structures	

Кор

CHOOSING INPUT SIGNAL FOR THE SHAKER

NORMAL MODE

Excite the structure with single sine at resonance frequency, with *tuned* input force combination (typically with several shakers), to have a single mode in resonance.

Oldest method, very accurate but very time-consuming

Get a physical *feel* of the mode

All energy of the shakers goes into a single mode of vibration

Still preferred method in Ground vibration testing of aircraft

32

RANDOM Random noise is a 'white noise' signal and thus covers all frequencies at the same time • Most 'natural' excitation • All at once, fast but implies lower energy in each frequency. Might not be sufficient for heavy test subjects.	Tanton Wowlf Alfred Lines provide date from logistic company of states of a second state of the second states of t
VRUE	

RANDOM Random noise is a 'white noise' signal and thus covers all frequencies at the same time • Most 'natural' excitation • All at once, fast but implies lower energy in each frequency. Might not be sufficient for heavy test subjects. But inherently implies leakage.	
	Vehicle structures

Kop

43

Kop

