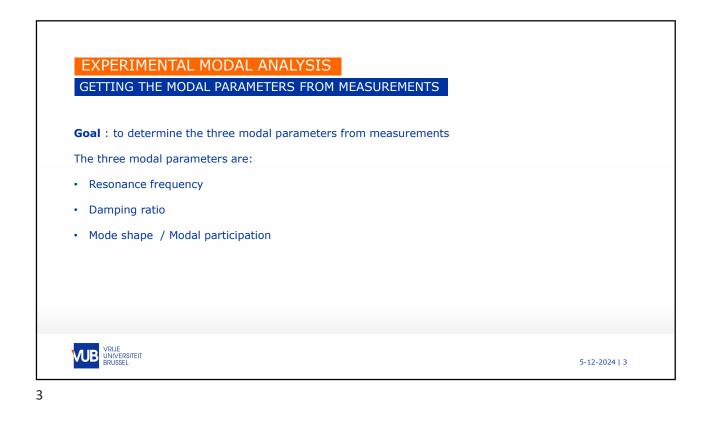
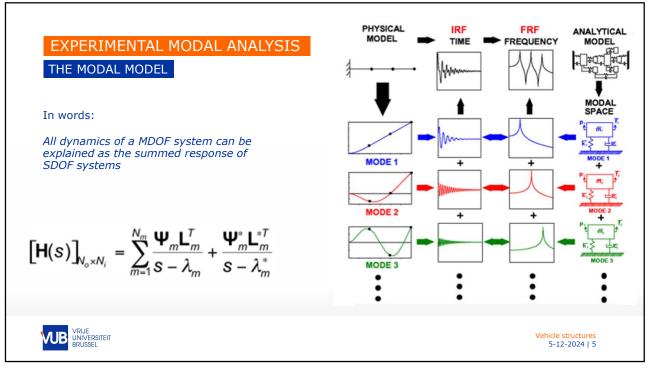
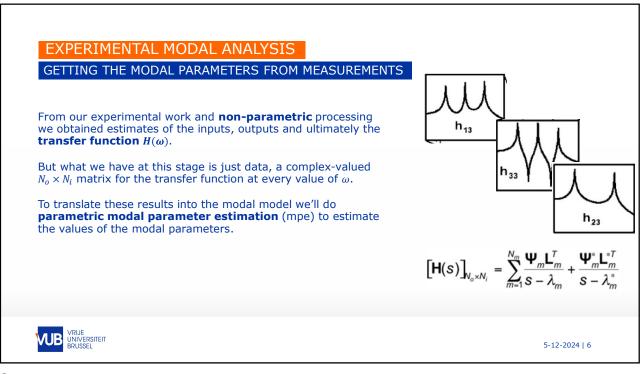
Кор

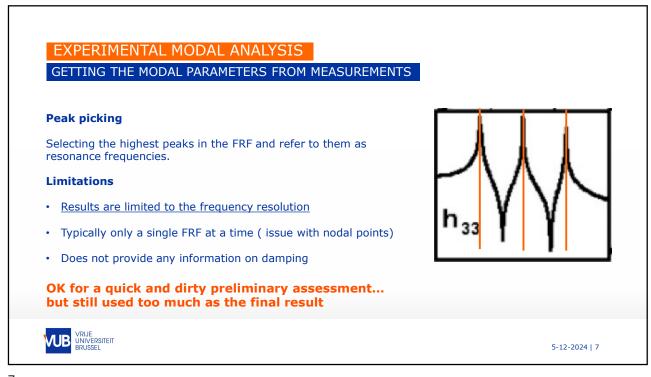
EXPERIMENTAL MODAL ANALYSIS GETTING THE MODAL PARAMETERS FROM MEASUREMENTS	
Goal : to determine the three modal parameters from measurements	
The three modal parameters are:	
VRIJE UNIVERSITEIT BRUSSEL	5-12-2024 2

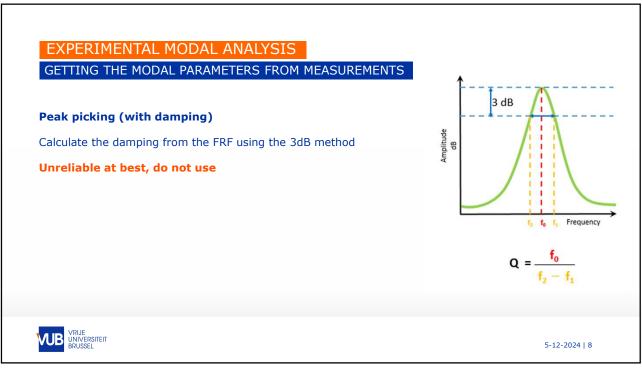


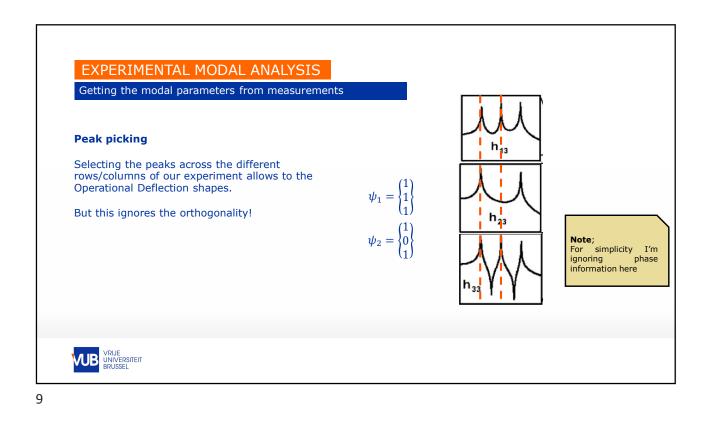
EXPERIMENTAL MODAL ANALYS GETTING THE MODAL PARAMETERS FR Goal : to determine the three modal param	ROM MEASUREMENTS
The three modal parameters are: Resonance frequency pole Damping ratio Mode shape / Modal participation Combined they represent the modal model	$\left[\mathbf{H}(s)\right]_{N_o \times N_i} = \sum_{m=1}^{N_m} \underbrace{\mathbf{\Psi}_m \mathbf{L}_m^T}_{s - \lambda_m} + \underbrace{\mathbf{\Psi}_m^* \mathbf{L}_m^{*T}}_{s - \lambda_m^*}$
	5-12-2024 4

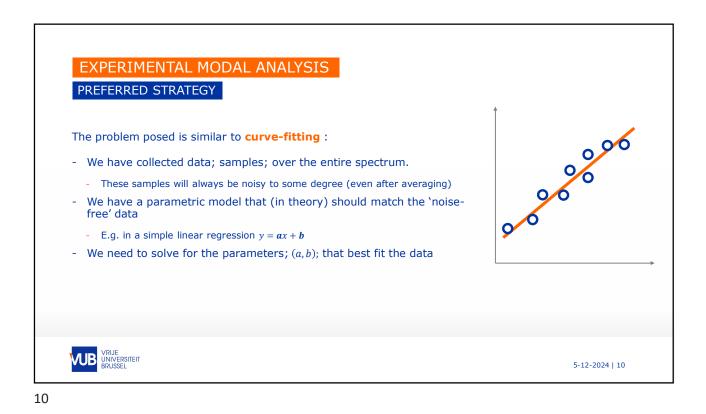




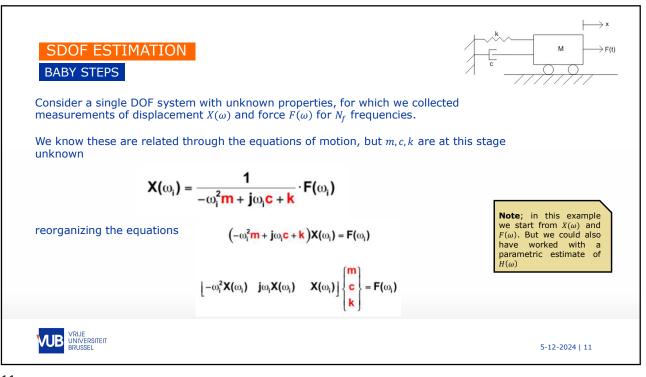


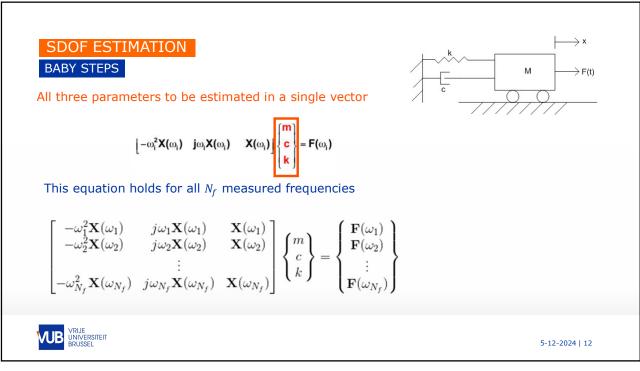






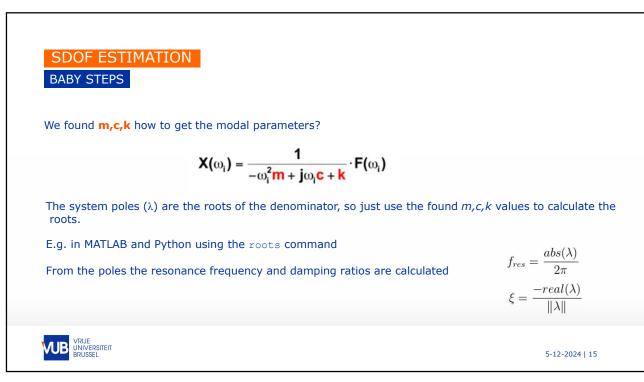
Кор

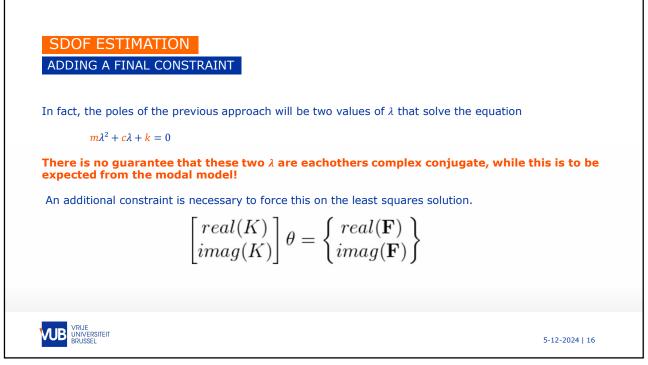


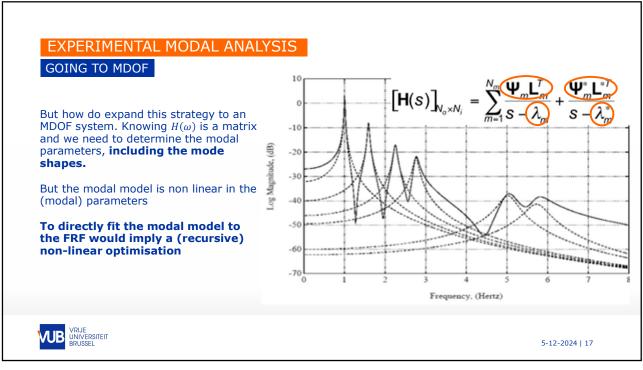


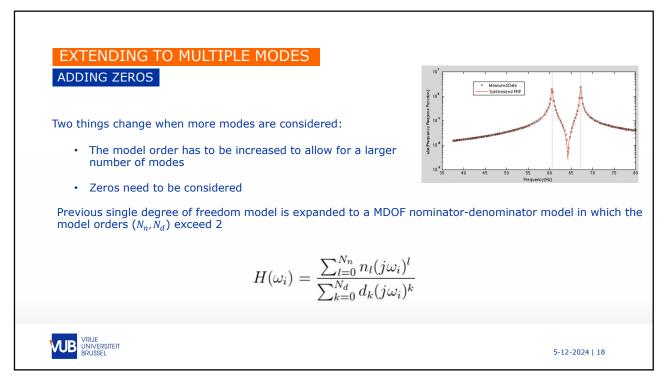
5/12/2024

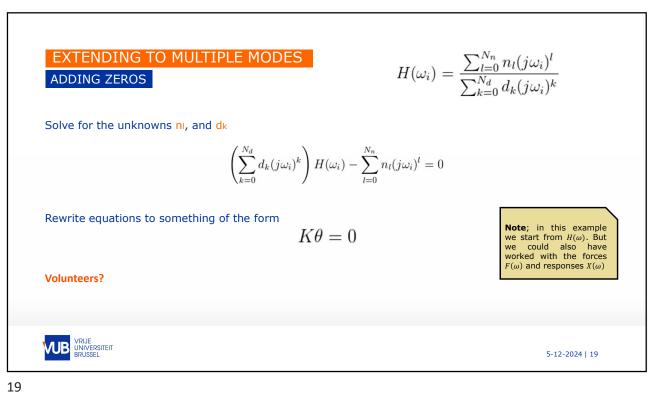
SDOF ESTIMATION BABY STEPS	$\mathbf{e}_{(N_f \times 1)} = K_{(N_f \times 3)} \theta_{(3 \times 1)} - \mathbf{F}_{(N_f \times 1)}$ $LS(\theta) = \mathbf{e}^T \mathbf{e}$
The values of θ found by solving the bottom equation represent the least squares estimate of the problem posed,	$\frac{\delta LS}{\delta \theta} = 0$
They are the set of parameters that best fit with the data contained in the measurements	$2\frac{\delta \mathbf{e}^{T}}{\delta \theta}\mathbf{e} = 0$ $2K^{T} \cdot (K\theta_{\mathbf{LS}} - \mathbf{F}) = 0$
We found m,c,k	$\theta_{\mathbf{LS}} = \left(K^T K\right)^{-1} K^T \mathbf{F}$ $= K \setminus \mathbf{F}$
	5-12-2024 14





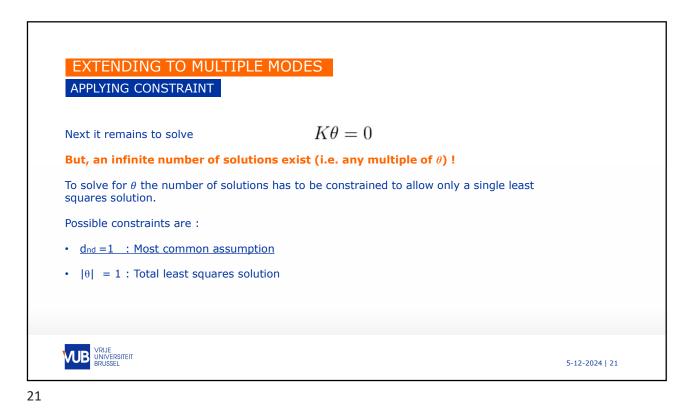


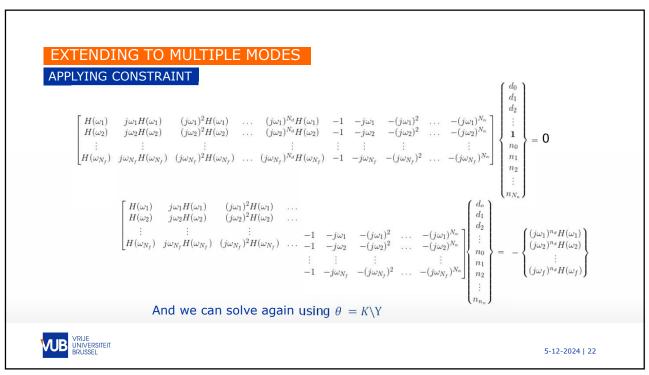




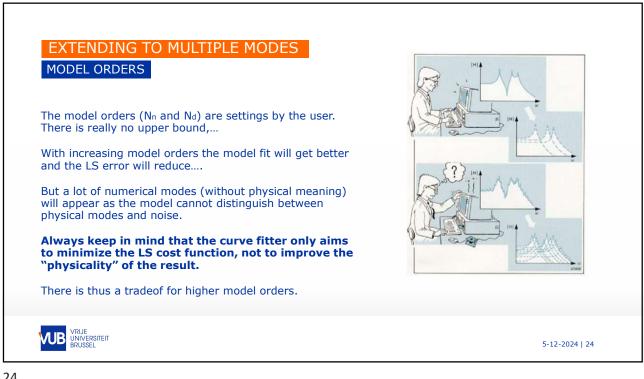
EXTENDING TO MULTIPLE MODES ADDING ZEROS	$\left(\sum_{k=0}^{N_d} d_k (j\omega_i)^k\right) H(\omega_i) - \sum_{l=0}^{N_n} n_l (j\omega_i)^l = 0$
$\begin{bmatrix} H(\omega_1) & j\omega_1 H(\omega_1) & (j\omega_1)^2 H(\omega_1) & \dots & (j\omega_1)^{N_d} H(\omega_1) \\ H(\omega_2) & j\omega_2 H(\omega_2) & (j\omega_2)^2 H(\omega_2) & \dots & (j\omega_2)^{N_d} H(\omega_2) \\ \vdots & \vdots & \vdots & \vdots \\ H(\omega_{N_f}) & j\omega_{N_f} H(\omega_{N_f}) & (j\omega_{N_f})^2 H(\omega_{N_f}) & \dots & (j\omega_{N_f})^{N_d} H(\omega_{N_f}) \end{bmatrix}$	$ \begin{bmatrix} -1 & -j\omega_1 & -(j\omega_1)^2 & \dots & -(j\omega_1)^{N_n} \\ -1 & -j\omega_2 & -(j\omega_2)^2 & \dots & -(j\omega_2)^{N_n} \\ \vdots & \vdots & \vdots & & \vdots \\ -1 & -j\omega_{N_f} & -(j\omega_{N_f})^2 & \dots & -(j\omega_{N_f})^{N_n} \end{bmatrix} \begin{bmatrix} d_0 \\ d_1 \\ d_2 \\ \vdots \\ d_{N_d} \\ n_0 \\ n_1 \\ n_2 \\ \vdots \\ n_{N_n} \end{bmatrix} = 0 $
$K\theta = 0$	
	5-12-2024 20

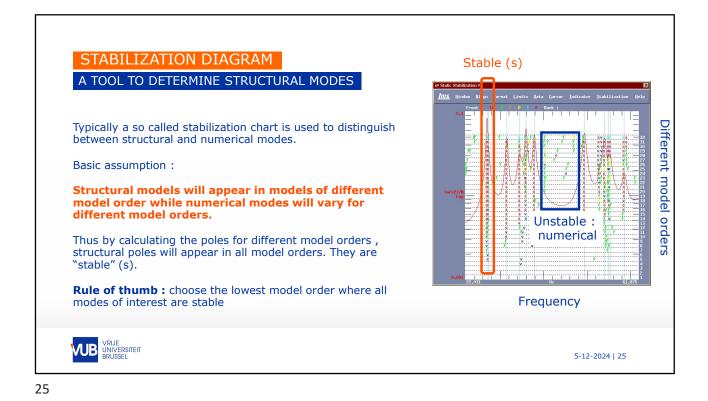
Кор



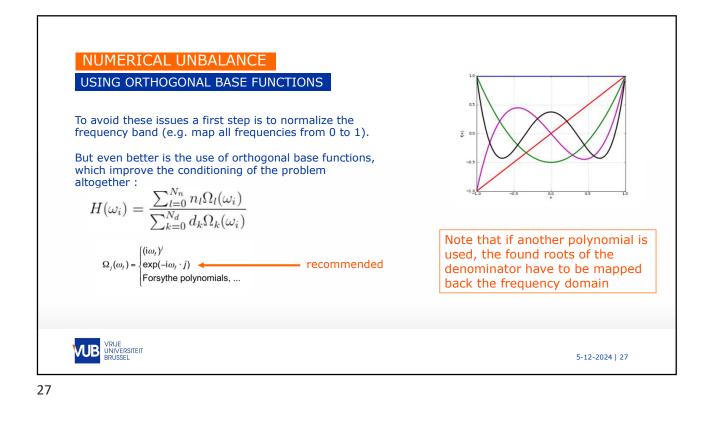


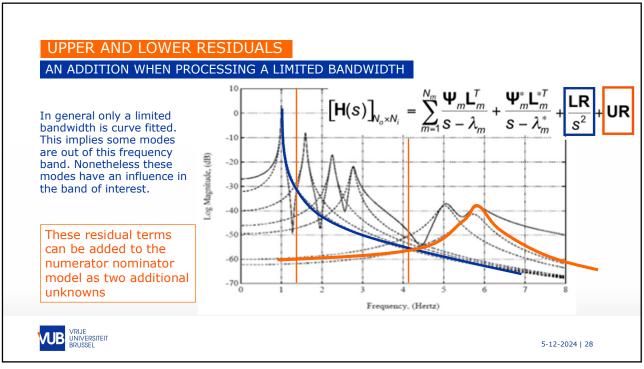
Kop



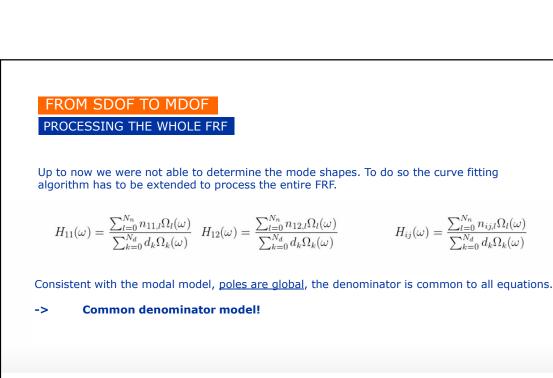


NUMERICAL UNBALANCE USING ORTHOGONAL BASE FUNCTIONS One of the common issues when implementing the frequency domain estimators is a numerical unbalance at high model orders. For high model orders the values in the first column and the last column differ in several orders of magnitude $-(j\omega_1)^2$ $\dots -(j\omega_1)^{N_n}$ -1 $-j\omega_1$ e.g. for model order 64, and the row with $\omega = 10$ $-(j\omega_2)^2$ $\ldots -(j\omega_2)^{N_n}$ -1 $-j\omega_2$ • First column : -1 $-(j\omega_{N_f})^2$... $-(j\omega_{N_f})^{N_n}$ -1 $-j\omega_N$ • Last column : 10^64 This unbalance leeds to numerical issues and ultimately erroneous results (e.g. a poor fit at low frequencies). 5-12-2024 | 26



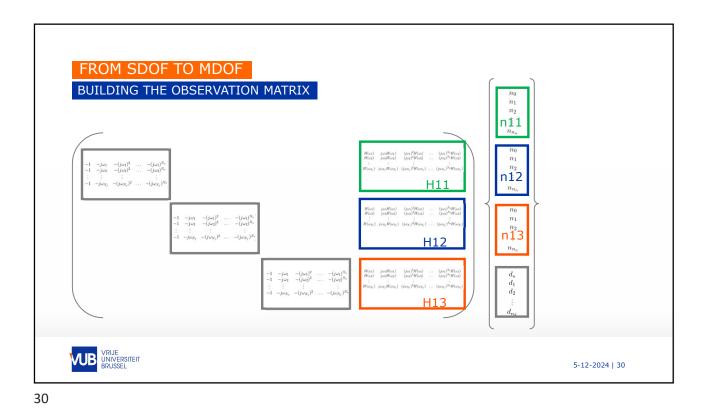


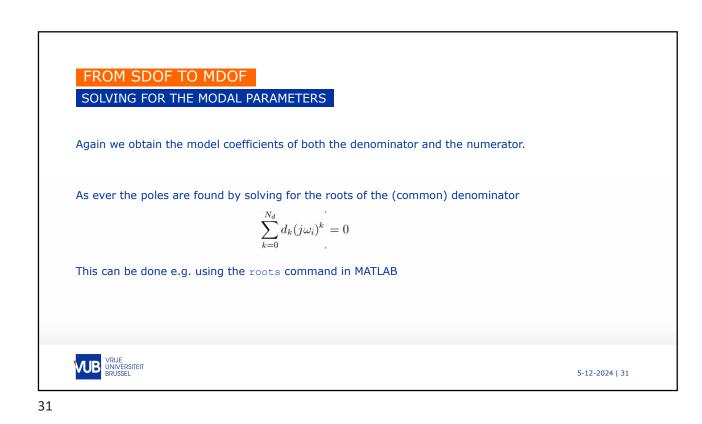
5-12-2024 | 29



29

VRIJE UNIVERSITEIT BRUSSEL





 $\left[\mathbf{H}(s)\right]_{N_{o}\times N_{i}} = \sum_{m=1}^{N_{m}} \frac{\mathbf{\Psi}_{m}\mathbf{L}_{m}^{T}}{s-\lambda_{m}} + \frac{\mathbf{\Psi}_{m}^{*}\mathbf{L}_{m}^{*T}}{s-\lambda_{m}^{*}}$ FROM SDOF TO MDOF SOLVING FOR THE MODE SHAPES The mode shapes are enclosed in the numerator polynomial. We need to evaluate in the found system poles lambda $H(\omega_m)(j\omega_m - \lambda_m) = A_m$ These residuals Am are related to the mode shape and modal participation vectors $A_m \sim \Psi_m L_m^T$ In theory Am would be of Rank 1, but in practice it will not : Singular value decomposition (SVD) $A_m = U\Sigma V^T$ The mode shape Psi_m will be as the first column of U, the first column of V is the modal participation L_m. This forces the orthogonality of the modes. 5-12-2024 | 32 32

